Optimal $$N$$N-Point Configurations on the Sphere: “Magic” Numbers and Smale’s 7th Problem
暂无分享,去创建一个
Michael K.-H. Kiessling | J. Brauchart | J. S. Brauchart | Rachele Nerattini | M. Kiessling | R. Nerattini | R. Nerattini
[1] R. Robinson. Arrangement of 24 points on a sphere , 1961 .
[2] M. Kiessling,et al. Onsager’s Ensemble for Point Vortices with Random Circulations on the Sphere , 2012 .
[3] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[4] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[5] E. Saff,et al. Asymptotics for minimal discrete energy on the sphere , 1995 .
[6] Josef Dick,et al. A simple proof of Stolarskys invariance principle , 2013 .
[7] L. L. Whyte. Unique Arrangements of Points on a Sphere , 1952 .
[8] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[9] Ian H. Sloan,et al. A variational characterisation of spherical designs , 2009, J. Approx. Theory.
[10] Alexander A. Berezin. Asymptotics of the maximum number of repulsive particles on a spherical surface , 1986 .
[11] G. Pólya,et al. Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .
[12] E. Saff,et al. Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.
[13] E. B. Saff,et al. On separation of minimal Riesz energy points on spheres in Euclidean spaces , 2005 .
[14] Tim LaFave,et al. Correspondences between the Classical Electrostatic Thomson Problem and Atomic Electronic Structure , 2013, 1403.2591.
[15] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[16] K. Stolarsky,et al. Spherical distributions of $N$ points with maximal distance sums are well spaced , 1975 .
[17] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[18] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[19] Josef Dick,et al. Point Sets on the Sphere $\mathbb{S}^{2}$ with Small Spherical Cap Discrepancy , 2011, Discret. Comput. Geom..
[20] Timothy J. Williams,et al. Possible Global Minimum Lattice Configurations for Thomson`s Problem of Charges on a Sphere , 1997 .
[21] B. L. Waerden,et al. Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .
[22] L. Fejes Tóth,et al. On the sum of distances determined by a pointset , 1956 .
[23] T. Erber,et al. Complex systems: Equilibrium configurations of N equal charges on a sphere (2 <= N <= 112) , 1995 .
[24] G. Eyink,et al. Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence , 1993 .
[25] D. Legg,et al. Discrete Logarithmic Energy on the Sphere , 2002 .
[26] Edward B. Saff,et al. Electrons on the Sphere , 1995 .
[27] Leo P. Kadanoff,et al. Discrete Charges on a Two Dimensional Conductor , 2004 .
[28] M. Bowick,et al. Crystalline order on a sphere and the generalized Thomson problem. , 2002, Physical review letters.
[29] G. Szegö. Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1924 .
[30] Xiaorong Hou,et al. Spherical Distribution of 5 Points with Maximal Distance Sum , 2009, Discret. Comput. Geom..
[31] G. Björck,et al. Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .
[32] M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .
[33] Ian H. Sloan,et al. QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..
[34] E. Saff,et al. Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.
[35] S. Smale. Mathematical problems for the next century , 1998 .
[36] David R. Nelson,et al. Crystalline Particle Packings on a Sphere with Long Range Power Law Potentials , 2005, cond-mat/0509777.
[37] B. W. Clare,et al. The closest packing of equal circles on a sphere , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[38] Paul K. Newton,et al. Vortex Lattice Theory: A Particle Interaction Perspective , 2009, SIAM Rev..
[39] Stephen Smale,et al. Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..
[40] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[41] Ludwig Danzer,et al. Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..
[42] Jean-François Sadoc,et al. Geometrical Frustration: Frontmatter , 1999 .
[43] J. Dick,et al. A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.
[44] E. Saff,et al. The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N , 2008, 0808.1291.
[45] J. Moser,et al. Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .
[46] Antonio Pérez-Garrido,et al. Comment on ``Possible Global Minimum Lattice Configurations for Thomson's Problem of Charges on a Sphere'' , 1997 .
[47] P. Forrester. Log-Gases and Random Matrices , 2010 .
[48] J. Brauchart,et al. A remark on exact formulas for the Riesz energy of the $N$th roots of unity , 2011 .
[49] M. Kiessling. The vlasov continuum limit for the classical microcanonical ensemble , 2009, 0902.2413.
[50] David J. Wales,et al. Defect motifs for spherical topologies , 2009 .
[51] Peng Zhang,et al. Minimization of energy per particle among Bravais lattices in R^2 : Lennard-Jones and Thomas-Fermi cases , 2014, 1402.2751.
[52] M. Kiessling,et al. Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry , 1994 .
[53] Matthew T. Calef,et al. Theoretical and computational investigations of minimal energy problems , 2009 .
[54] C. Bachoc,et al. New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.
[55] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[56] Peter J. Forrester,et al. The two-dimensional Coulomb gas on a sphere: Exact results , 1992 .
[57] J. Dick,et al. A Characterization of Sobolev Spaces on the Sphere and an Extension of Stolarsky’s Invariance Principle to Arbitrary Smoothness , 2012, 1203.5157.
[58] T. Hales. The Kepler conjecture , 1998, math/9811078.
[59] A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.
[60] Satish Babu Korada,et al. Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph , 2009 .
[61] C. Beltrán. Harmonic Properties of the Logarithmic Potential and the Computability of Elliptic Fekete Points , 2013 .
[62] A Macroscopic System with Undamped Periodic Compressional Oscillations , 2013 .
[63] Etienne Sandier,et al. Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere , 2014, 1404.4485.
[64] Joel Berman,et al. Optimizing the Arrangement of Points on the Unit Sphere , 1977 .
[65] Josef Dick,et al. Quasi–Monte Carlo rules for numerical integration over the unit sphere $${\mathbb{S}^2}$$ , 2011, Numerische Mathematik.
[66] F. Pillichshammer,et al. Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .
[67] I. Pritsker. Equidistribution of points via energy , 2011, 1307.6076.
[68] Richard Evan Schwartz,et al. The Five-Electron Case of Thomson’s Problem , 2013, Exp. Math..
[69] Luca Giomi,et al. Two-dimensional matter: order, curvature and defects , 2008, 0812.3064.
[70] David J. Wales,et al. Structure and dynamics of spherical crystals characterized for the Thomson problem , 2006 .
[71] P. Forrester. Log-Gases and Random Matrices (LMS-34) , 2010 .
[72] C. Beltrán. Foundations of Computational Mathematics, Budapest 2011: The State of the Art in Smale's 7th Problem , 2012 .
[73] E. Saff,et al. Distributing many points on a sphere , 1997 .
[74] D. Hardin,et al. Observed Asymptotic Differences in Energies of Stable and Minimal Point Configurations on $\mathbb{S}^2$ and the Role of Defects , 2013, 1307.0409.
[75] D. Wales. Energy Landscapes by David Wales , 2004 .
[76] Enrique Bendito,et al. Estimation of Fekete points , 2007, J. Comput. Phys..
[77] Oleg R. Musin,et al. The Strong Thirteen Spheres Problem , 2010, Discret. Comput. Geom..
[79] E. Saff,et al. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere , 2012, 1202.4037.
[80] John Leech,et al. Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.
[81] Explicit formulas for the Riesz energy of the $N$th roots of unity , 2011, 1105.5530.
[82] F. Calogero. Erratum: Solution of the one‐dimensional N‐body problems with quadratic and/or inversely quadratic pair potentials [J. Math. Phys. 12, 419–436 (1971)] , 1996 .
[83] M. Atiyah,et al. Polyhedra in Physics, Chemistry and Geometry , 2003, math-ph/0303071.
[84] E. P. Ferreira,et al. The interactions of π - -mesons with complex nuclei in the energy range (100–800) MeV. III. The interaction lengths and elastic scattering of 300 MeV π - -mesons in G5 emulsion , 1959 .
[85] Gerold Wagner,et al. On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .
[86] G. Kirchhoff. Vorlesungen über mathematische physik , 1877 .
[87] D. Hardin,et al. Riesz s-Equilibrium Measures on d-Rectifiable Sets as s Approaches d , 2008, 0808.3802.
[88] D. M. Deaven,et al. Genetic-algorithm energy minimization for point charges on a sphere. , 1996, Physical review. B, Condensed matter.
[89] Exact general solutions to extraordinary N–body problems , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[90] E. Saff,et al. Minimal Discrete Energy on the Sphere , 1994 .
[91] J. Beck. Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .
[92] M. Shub,et al. Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials , 2011 .
[93] William R. Smith,et al. Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .
[94] S. Serfaty,et al. 2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.