Optimal $$N$$N-Point Configurations on the Sphere: “Magic” Numbers and Smale’s 7th Problem

This paper inquires into the concavity of the map $$N\mapsto v_s(N)$$N↦vs(N) from the integers $$N\ge 2$$N≥2 into the minimal average standardized Riesz pair-energies $$v_s(N)$$vs(N) of $$N$$N-point configurations on the sphere $$\mathbb {S}^2$$S2 for various $$s\in \mathbb {R}$$s∈R. The standardized Riesz pair-energy of a pair of points on $$\mathbb {S}^2$$S2 a chordal distance $$r$$r apart is $$V_s(r)= s^{-1}\left( r^{-s}-1 \right) $$Vs(r)=s-1r-s-1, $$s \ne 0$$s≠0, which becomes $$V_0(r) = \ln \frac{1}{r}$$V0(r)=ln1r in the limit $$s\rightarrow 0$$s→0. Averaging it over the $$\left( \begin{array}{c} N\\ 2\end{array}\right) $$N2 distinct pairs in a configuration and minimizing over all possible $$N$$N-point configurations defines $$v_s(N)$$vs(N). It is known that $$N\mapsto v_s(N)$$N↦vs(N) is strictly increasing for each $$s\in \mathbb {R}$$s∈R, and for $$s<2$$s<2 also bounded above, thus “overall concave.” It is (easily) proved that $$N\mapsto v_{-2}^{}(N)$$N↦v-2(N) is even locally strictly concave, and that so is the map $$2n\mapsto v_s(2n)$$2n↦vs(2n) for $$s<-2$$s<-2. By analyzing computer-experimental data of putatively minimal average Riesz pair-energies $$v_s^x(N)$$vsx(N) for $$s\in \{-1,0,1,2,3\}$$s∈{-1,0,1,2,3} and $$N\in \{2,\ldots ,200\}$$N∈{2,…,200}, it is found that the map $$N\mapsto {v}_{-1}^x(N)$$N↦v-1x(N) is locally strictly concave, while $$N\mapsto {v}_s^x(N)$$N↦vsx(N) is not always locally strictly concave for $$s\in \{0,1,2,3\}$$s∈{0,1,2,3}: concavity defects occur whenever $$N\in {\mathcal {C}}^{x}_+(s)$$N∈C+x(s) (an $$s$$s-specific empirical set of integers). It is found that the empirical map $$s\mapsto {\mathcal {C}}^{x}_+(s),\ s\in \{-2,-1,0,1,2,3\}$$s↦C+x(s),s∈{-2,-1,0,1,2,3}, is set-theoretically increasing; moreover, the percentage of odd numbers in $${\mathcal {C}}^{x}_+(s),\ s\in \{0,1,2,3\}$$C+x(s),s∈{0,1,2,3} is found to increase with $$s$$s. The integers in $${\mathcal {C}}^{x}_+(0)$$C+x(0) are few and far between, forming a curious sequence of numbers, reminiscent of the “magic numbers” in nuclear physics. It is conjectured that these new “magic numbers” are associated with optimally symmetric optimal-log-energy $$N$$N-point configurations on $$\mathbb {S}^2$$S2. A list of interesting open problems is extracted from the empirical findings, and some rigorous first steps toward their solutions are presented. It is emphasized how concavity can assist in the solution to Smale’s $$7$$7th Problem, which asks for an efficient algorithm to find near-optimal $$N$$N-point configurations on $$\mathbb {S}^2$$S2 and higher-dimensional spheres.

[1]  R. Robinson Arrangement of 24 points on a sphere , 1961 .

[2]  M. Kiessling,et al.  Onsager’s Ensemble for Point Vortices with Random Circulations on the Sphere , 2012 .

[3]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[4]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[5]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[6]  Josef Dick,et al.  A simple proof of Stolarskys invariance principle , 2013 .

[7]  L. L. Whyte Unique Arrangements of Points on a Sphere , 1952 .

[8]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[9]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[10]  Alexander A. Berezin Asymptotics of the maximum number of repulsive particles on a spherical surface , 1986 .

[11]  G. Pólya,et al.  Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .

[12]  E. Saff,et al.  Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.

[13]  E. B. Saff,et al.  On separation of minimal Riesz energy points on spheres in Euclidean spaces , 2005 .

[14]  Tim LaFave,et al.  Correspondences between the Classical Electrostatic Thomson Problem and Atomic Electronic Structure , 2013, 1403.2591.

[15]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[16]  K. Stolarsky,et al.  Spherical distributions of $N$ points with maximal distance sums are well spaced , 1975 .

[17]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[18]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[19]  Josef Dick,et al.  Point Sets on the Sphere $\mathbb{S}^{2}$ with Small Spherical Cap Discrepancy , 2011, Discret. Comput. Geom..

[20]  Timothy J. Williams,et al.  Possible Global Minimum Lattice Configurations for Thomson`s Problem of Charges on a Sphere , 1997 .

[21]  B. L. Waerden,et al.  Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .

[22]  L. Fejes Tóth,et al.  On the sum of distances determined by a pointset , 1956 .

[23]  T. Erber,et al.  Complex systems: Equilibrium configurations of N equal charges on a sphere (2 <= N <= 112) , 1995 .

[24]  G. Eyink,et al.  Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence , 1993 .

[25]  D. Legg,et al.  Discrete Logarithmic Energy on the Sphere , 2002 .

[26]  Edward B. Saff,et al.  Electrons on the Sphere , 1995 .

[27]  Leo P. Kadanoff,et al.  Discrete Charges on a Two Dimensional Conductor , 2004 .

[28]  M. Bowick,et al.  Crystalline order on a sphere and the generalized Thomson problem. , 2002, Physical review letters.

[29]  G. Szegö Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1924 .

[30]  Xiaorong Hou,et al.  Spherical Distribution of 5 Points with Maximal Distance Sum , 2009, Discret. Comput. Geom..

[31]  G. Björck,et al.  Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .

[32]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[33]  Ian H. Sloan,et al.  QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..

[34]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[35]  S. Smale Mathematical problems for the next century , 1998 .

[36]  David R. Nelson,et al.  Crystalline Particle Packings on a Sphere with Long Range Power Law Potentials , 2005, cond-mat/0509777.

[37]  B. W. Clare,et al.  The closest packing of equal circles on a sphere , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  Paul K. Newton,et al.  Vortex Lattice Theory: A Particle Interaction Perspective , 2009, SIAM Rev..

[39]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[40]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[41]  Ludwig Danzer,et al.  Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..

[42]  Jean-François Sadoc,et al.  Geometrical Frustration: Frontmatter , 1999 .

[43]  J. Dick,et al.  A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.

[44]  E. Saff,et al.  The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N , 2008, 0808.1291.

[45]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .

[46]  Antonio Pérez-Garrido,et al.  Comment on ``Possible Global Minimum Lattice Configurations for Thomson's Problem of Charges on a Sphere'' , 1997 .

[47]  P. Forrester Log-Gases and Random Matrices , 2010 .

[48]  J. Brauchart,et al.  A remark on exact formulas for the Riesz energy of the $N$th roots of unity , 2011 .

[49]  M. Kiessling The vlasov continuum limit for the classical microcanonical ensemble , 2009, 0902.2413.

[50]  David J. Wales,et al.  Defect motifs for spherical topologies , 2009 .

[51]  Peng Zhang,et al.  Minimization of energy per particle among Bravais lattices in R^2 : Lennard-Jones and Thomas-Fermi cases , 2014, 1402.2751.

[52]  M. Kiessling,et al.  Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry , 1994 .

[53]  Matthew T. Calef,et al.  Theoretical and computational investigations of minimal energy problems , 2009 .

[54]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[55]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[56]  Peter J. Forrester,et al.  The two-dimensional Coulomb gas on a sphere: Exact results , 1992 .

[57]  J. Dick,et al.  A Characterization of Sobolev Spaces on the Sphere and an Extension of Stolarsky’s Invariance Principle to Arbitrary Smoothness , 2012, 1203.5157.

[58]  T. Hales The Kepler conjecture , 1998, math/9811078.

[59]  A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.

[60]  Satish Babu Korada,et al.  Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph , 2009 .

[61]  C. Beltrán Harmonic Properties of the Logarithmic Potential and the Computability of Elliptic Fekete Points , 2013 .

[62]  A Macroscopic System with Undamped Periodic Compressional Oscillations , 2013 .

[63]  Etienne Sandier,et al.  Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere , 2014, 1404.4485.

[64]  Joel Berman,et al.  Optimizing the Arrangement of Points on the Unit Sphere , 1977 .

[65]  Josef Dick,et al.  Quasi–Monte Carlo rules for numerical integration over the unit sphere $${\mathbb{S}^2}$$ , 2011, Numerische Mathematik.

[66]  F. Pillichshammer,et al.  Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .

[67]  I. Pritsker Equidistribution of points via energy , 2011, 1307.6076.

[68]  Richard Evan Schwartz,et al.  The Five-Electron Case of Thomson’s Problem , 2013, Exp. Math..

[69]  Luca Giomi,et al.  Two-dimensional matter: order, curvature and defects , 2008, 0812.3064.

[70]  David J. Wales,et al.  Structure and dynamics of spherical crystals characterized for the Thomson problem , 2006 .

[71]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[72]  C. Beltrán Foundations of Computational Mathematics, Budapest 2011: The State of the Art in Smale's 7th Problem , 2012 .

[73]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[74]  D. Hardin,et al.  Observed Asymptotic Differences in Energies of Stable and Minimal Point Configurations on $\mathbb{S}^2$ and the Role of Defects , 2013, 1307.0409.

[75]  D. Wales Energy Landscapes by David Wales , 2004 .

[76]  Enrique Bendito,et al.  Estimation of Fekete points , 2007, J. Comput. Phys..

[77]  Oleg R. Musin,et al.  The Strong Thirteen Spheres Problem , 2010, Discret. Comput. Geom..

[79]  E. Saff,et al.  The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere , 2012, 1202.4037.

[80]  John Leech,et al.  Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.

[81]  Explicit formulas for the Riesz energy of the $N$th roots of unity , 2011, 1105.5530.

[82]  F. Calogero Erratum: Solution of the one‐dimensional N‐body problems with quadratic and/or inversely quadratic pair potentials [J. Math. Phys. 12, 419–436 (1971)] , 1996 .

[83]  M. Atiyah,et al.  Polyhedra in Physics, Chemistry and Geometry , 2003, math-ph/0303071.

[84]  E. P. Ferreira,et al.  The interactions of π - -mesons with complex nuclei in the energy range (100–800) MeV. III. The interaction lengths and elastic scattering of 300 MeV π - -mesons in G5 emulsion , 1959 .

[85]  Gerold Wagner,et al.  On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .

[86]  G. Kirchhoff Vorlesungen über mathematische physik , 1877 .

[87]  D. Hardin,et al.  Riesz s-Equilibrium Measures on d-Rectifiable Sets as s Approaches d , 2008, 0808.3802.

[88]  D. M. Deaven,et al.  Genetic-algorithm energy minimization for point charges on a sphere. , 1996, Physical review. B, Condensed matter.

[89]  Exact general solutions to extraordinary N–body problems , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[90]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[91]  J. Beck Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .

[92]  M. Shub,et al.  Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials , 2011 .

[93]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .

[94]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.