Genetics of antimicrobial resistance in Staphylococcus aureus.

Strains of Staphylococcus aureus that are resistant to multiple antimicrobial compounds, including most available classes of antibiotics and some antiseptics, are a major threat to patient care owing to their stubborn intransigence to chemotherapy and disinfection. This reality has stimulated extensive efforts to understand the genetic nature of the determinants encoding antimicrobial resistance, together with the mechanisms by which these determinants evolve over time and are spread within bacterial populations. Such studies have benefited from the application of molecular genetics and in recent years, the sequencing of over a dozen complete staphylococcal genomes. It is now evident that the evolution of multiresistance is driven by the acquisition of discrete preformed antimicrobial resistance genes that are exchanged between organisms via horizontal gene transfer. Nonetheless, chromosomal mutation is the catalyst of novel resistance determinants and is likely to have an enhanced influence with the ongoing introduction of synthetic antibiotics.

[1]  R. Skurray,et al.  Mobile elements in the evolution and spread of multiple-drug resistance in staphylococci. , 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[2]  J. May,et al.  Tn4001: A gentamicin and kanamycin resistance transposon in Staphylococcus aureus , 2004, Molecular and General Genetics MGG.

[3]  R. Novick,et al.  Epidemiological and structural studies of Staphylococcus aureus R plasmids mediating resistance to tobramycin and streptogramin. , 1980, Plasmid.

[4]  J. Saunders,et al.  Genetics and evolution of antibiotic resistance. , 1984, British medical bulletin.

[5]  R. Skurray,et al.  Physical and biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. , 1989, Journal of general microbiology.

[6]  Marilyn Roberts,et al.  Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance , 2001, Microbiology and Molecular Biology Reviews.

[7]  Stanley N Cohen Transposable genetic elements and plasmid evolution , 1976, Nature.

[8]  S. Amyes,et al.  Plasmid-mediated trimethoprim-resistance in Staphylococcus aureus. Characterization of the first gram-positive plasmid dihydrofolate reductase (type S1). , 1987, The Biochemical journal.

[9]  M. Page,et al.  Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus? , 1995, Journal of bacteriology.

[10]  J. Sherris,et al.  STAPHYLOCOCCAL RESISTANCE TO ANTIBIOTICS: ORIGIN, MEASUREMENT, AND EPIDEMIOLOGY , 1974, Annals of the New York Academy of Sciences.

[11]  M. Arthur,et al.  The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. , 1995, Gene.

[12]  Teruyo Ito,et al.  Genetic Organization of the Chromosome Region Surrounding mecA in Clinical Staphylococcal Strains: Role of IS431-Mediated mecI Deletion in Expression of Resistance in mecA-Carrying, Low-Level Methicillin- Resistant Staphylococcus haemolyticus , 2001, Antimicrobial Agents and Chemotherapy.

[13]  S. Schwarz,et al.  Identification of a Novel Trimethoprim Resistance Gene, dfrK, in a Methicillin-Resistant Staphylococcus aureus ST398 Strain and Its Physical Linkage to the Tetracycline Resistance Gene tet(L) , 2008, Antimicrobial Agents and Chemotherapy.

[14]  E. Heir,et al.  Novel Plasmid-Borne Gene qacJ Mediates Resistance to Quaternary Ammonium Compounds in Equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius , 2003, Antimicrobial Agents and Chemotherapy.

[15]  M. Terpenning,et al.  Detection and characterization of mupirocin resistance in Staphylococcus aureus , 1993, Antimicrobial Agents and Chemotherapy.

[16]  J. Lupski,et al.  Cloning and nucleotide sequence of a chromosomally encoded tetracycline resistance determinant, tetA(M), from a pathogenic, methicillin-resistant strain of Staphylococcus aureus , 1990, Antimicrobial Agents and Chemotherapy.

[17]  K. Sieradzki,et al.  Mechanism of vancomycin resistance in methicillin resistant Staphylococcus aureus. , 2004, Polish journal of microbiology.

[18]  R. Novick,et al.  Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. , 1979, Plasmid.

[19]  R. Lacey Evidence for two mechanisms of plasmid transfer in mixed cultures of Staphylococcus aureus. , 1980, Journal of general microbiology.

[20]  M. Soares,et al.  Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. , 2001, Journal of molecular biology.

[21]  D. Hooper Fluoroquinolone resistance among Gram-positive cocci. , 2002, The Lancet. Infectious diseases.

[22]  G. Kaatz,et al.  Multidrug Resistance in Staphylococcus aureus Due to Overexpression of a Novel Multidrug and Toxin Extrusion (MATE) Transport Protein , 2005, Antimicrobial Agents and Chemotherapy.

[23]  M. Byrne,et al.  The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. , 1987, Journal of general microbiology.

[24]  V. Burdett,et al.  Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. , 1991, The Journal of biological chemistry.

[25]  M. Delepierre,et al.  Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. , 1993, Gene.

[26]  P. Bradford,et al.  A Novel MATE Family Efflux Pump Contributes to the Reduced Susceptibility of Laboratory-Derived Staphylococcus aureus Mutants to Tigecycline , 2005, Antimicrobial Agents and Chemotherapy.

[27]  D. Allen,et al.  Genomic Analysis Reveals a Point Mutation in the Two-Component Sensor Gene graS That Leads to Intermediate Vancomycin Resistance in Clinical Staphylococcus aureus , 2008, Antimicrobial Agents and Chemotherapy.

[28]  C. Hackbarth,et al.  blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus , 1993, Antimicrobial Agents and Chemotherapy.

[29]  O. Sköld Resistance to trimethoprim and sulfonamides. , 2001, Veterinary research.

[30]  R. Novick,et al.  Tn554—a site-specific represser-controlled transposon in Staphylococcus aureus , 1979, Nature.

[31]  Alexander Tomasz,et al.  Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing , 2007, Proceedings of the National Academy of Sciences.

[32]  M. Arthur,et al.  The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction , 1997, Journal of bacteriology.

[33]  K. Dyke,et al.  Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870 , 1994, Antimicrobial Agents and Chemotherapy.

[34]  A. Derbise,et al.  Nucleotide sequence of the Staphylococcus aureus transposon, Tn5405, carrying aminoglycosides resistance genes , 1997, Journal of Basic Microbiology.

[35]  R. Novick,et al.  Prophage-dependent plasmid integration in Staphylococcus aureus , 1975, Journal of bacteriology.

[36]  R. Novick,et al.  Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. , 1983, Plasmid.

[37]  H. Shapiro,et al.  Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus , 2003, Antimicrobial Agents and Chemotherapy.

[38]  S. Schwarz,et al.  Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[39]  H. Yuzawa,et al.  Mutated Response Regulator graR Is Responsible for Phenotypic Conversion of Staphylococcus aureus from Heterogeneous Vancomycin-Intermediate Resistance to Vancomycin-Intermediate Resistance , 2007, Antimicrobial Agents and Chemotherapy.

[40]  K. Hiramatsu,et al.  Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. , 1998, The Journal of antimicrobial chemotherapy.

[41]  I. Chopra,et al.  Evidence for mutation to streptomycin resistance in clinical strains of Staphylococcus aureus. , 1972, Journal of general microbiology.

[42]  Xiao Xue Ma,et al.  Novel Type V Staphylococcal Cassette Chromosome mec Driven by a Novel Cassette Chromosome Recombinase, ccrC , 2004, Antimicrobial Agents and Chemotherapy.

[43]  C. Walsh,et al.  Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. , 1991, Biochemistry.

[44]  J. Humphrey,et al.  INTERNATIONAL UNITS AND STANDARDS , 1976, The Lancet.

[45]  G. Peters,et al.  Pathogenesis of infections due to coagulase-negative staphylococci. , 2002, The Lancet. Infectious diseases.

[46]  Jaime Moreno,et al.  Clinical and Microbiological Aspects of Linezolid Resistance Mediated by the cfr Gene Encoding a 23S rRNA Methyltransferase , 2008, Journal of Clinical Microbiology.

[47]  T. Littlejohn,et al.  Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. , 1991, Gene.

[48]  Q. C. Truong-Bolduc,et al.  NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[49]  C. Rayner,et al.  Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus , 2005, Internal medicine journal.

[50]  Y. Fukuchi,et al.  Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin , 1997, The Lancet.

[51]  I. Paulsen,et al.  Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. , 1992, FEMS microbiology letters.

[52]  I. Paulsen,et al.  IS257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids , 1996, Journal of bacteriology.

[53]  Y. Shiratori,et al.  Characterization of elongated Helicobacter pylori isolated from a patient with gastric-mucosa-associated lymphoid-tissue lymphoma. , 2004, Journal of medical microbiology.

[54]  R. Gaynes,et al.  Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[55]  R. Novick,et al.  Comparative analysis of five related Staphylococcal plasmids. , 1988, Plasmid.

[56]  N. Woodford,et al.  VANCOMYCIN-RESISTANT ENTEROCOCCI , 1988, The Lancet.

[57]  Roberta B Carey,et al.  Methicillin-resistant S. aureus infections among patients in the emergency department. , 2006, The New England journal of medicine.

[58]  J. Evans,et al.  Characterization of the conjugation system associated with the Staphylococcus aureus plasmid pJE1. , 1988, Journal of general microbiology.

[59]  P. Loll,et al.  The structural biology of molecular recognition by vancomycin. , 2000, Annual review of biophysics and biomolecular structure.

[60]  R. Novick,et al.  Plasmid-linked Resistance to Inorganic Salts in Staphylococcus aureus , 1968, Journal of bacteriology.

[61]  A. Neyfakh,et al.  Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus , 1996, Antimicrobial agents and chemotherapy.

[62]  T. Tsuchiya,et al.  Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. , 2006, Biological & pharmaceutical bulletin.

[63]  N. Kleckner,et al.  Transposable elements in prokaryotes. , 1981, Annual review of genetics.

[64]  S. Levy,et al.  Targeting virulence to prevent infection: to kill or not to kill? , 2004 .

[65]  E. Asheshov Chromosomal Location of the Genetic Elements Controlling Penicillinase Production in a Strain of Staphylococcus aureus , 1966, Nature.

[66]  W. V. Shaw,et al.  O-Acetyltransferases for chloramphenicol and other natural products , 1997, Antimicrobial agents and chemotherapy.

[67]  R. Novick,et al.  Genetic translocation in Staphylococcus aureus. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Miguel Vicente,et al.  The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? , 2006, FEMS microbiology reviews.

[69]  M. Kuroda,et al.  The emergence and evolution of methicillin-resistant Staphylococcus aureus. , 2001, Trends in microbiology.

[70]  H. Sahl,et al.  Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. , 2002, Journal of molecular biology.

[71]  M. Gillespie,et al.  Cloning and expression of Staphylococcus aureus plasmid-mediated quaternary ammonium resistance in Escherichia coli , 1985, Antimicrobial Agents and Chemotherapy.

[72]  J. Gustafson,et al.  Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. , 2002, The Journal of antimicrobial chemotherapy.

[73]  R. Skurray,et al.  Molecular analysis of a mobilizable theta-mode trimethoprim resistance plasmid from coagulase-negative staphylococci. , 1997, Plasmid.

[74]  A. Holck,et al.  The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry , 1999, Journal of applied microbiology.

[75]  P. Rather,et al.  Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. , 1993, Microbiological reviews.

[76]  R. Novick,et al.  Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. , 1980, Plasmid.

[77]  M. Zervos,et al.  Plasmid Content of a Vancomycin-Resistant Enterococcus faecalis Isolate from a Patient Also Colonized by Staphylococcus aureus with a VanA Phenotype , 2003, Antimicrobial Agents and Chemotherapy.

[78]  I. Paulsen,et al.  Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Shetty,et al.  Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus , 2003, Science.

[80]  S. Amyes,et al.  Trimethoprim resistance determinants encoding a dihydrofolate reductase in clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci. , 1988, Journal of medical microbiology.

[81]  D. Smith,et al.  Decreased antimicrobial resistance following changes in antibiotic use. , 2000, Surgical infections.

[82]  J. Conly,et al.  Novel Staphylococcal Cassette Chromosome mec Type, Tentatively Designated Type VIII, Harboring Class A mec and Type 4 ccr Gene Complexes in a Canadian Epidemic Strain of Methicillin-Resistant Staphylococcus aureus , 2008, Antimicrobial Agents and Chemotherapy.

[83]  T. Wichelhaus,et al.  Linezolid Resistance in Staphylococcus aureus: Gene Dosage Effect, Stability, Fitness Costs, and Cross-Resistances , 2008, Antimicrobial Agents and Chemotherapy.

[84]  Teruyo Ito,et al.  Structural Comparison of Three Types of Staphylococcal Cassette Chromosome mec Integrated in the Chromosome in Methicillin-Resistant Staphylococcus aureus , 2001, Antimicrobial Agents and Chemotherapy.

[85]  I. Chopra,et al.  Intrinsic Novobiocin Resistance in Staphylococcus saprophyticus , 2007, Antimicrobial Agents and Chemotherapy.

[86]  S. Schwarz,et al.  Molecular basis of bacterial resistance to chloramphenicol and florfenicol. , 2004, FEMS microbiology reviews.

[87]  Teruyo Ito,et al.  Staphylococcal Cassette Chromosome mec (SCCmec) Typing of Methicillin-Resistant Staphylococcus aureus Strains Isolated in 11 Asian Countries: a Proposal for a New Nomenclature for SCCmec Elements , 2006, Antimicrobial Agents and Chemotherapy.

[88]  D. Rouch,et al.  Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257 , 1989, Molecular microbiology.

[89]  M. Page,et al.  A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. , 1997, Journal of molecular biology.

[90]  J. Duval,et al.  Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. , 1988, The New England journal of medicine.

[91]  Xiao Xue Ma,et al.  Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. , 2003, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[92]  R. Howe,et al.  The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. , 2002, Annual review of microbiology.

[93]  M. Barber,et al.  Infection by penicillin-resistant staphylococci. , 1948, Lancet.

[94]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .

[95]  M. Gillespie,et al.  Plasmids in multiresistant Staphylococcus aureus. , 1986, Microbiological sciences.

[96]  D. Rothstein,et al.  The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices. , 1993, Plasmid.

[97]  L. Koeth,et al.  Clinical Progression of Methicillin-Resistant Staphylococcus aureus Vertebral Osteomyelitis Associated with Reduced Susceptibility to Daptomycin , 2005, Journal of Clinical Microbiology.

[98]  R. Skurray,et al.  Replication of Staphylococcal Multiresistance Plasmids , 2000, Journal of bacteriology.

[99]  M. Arthur,et al.  Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147 , 1993, Journal of bacteriology.

[100]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[101]  R. Weinstein,et al.  Structural and phenotypic varieties of gentamicin resistance plasmids in hospital strains of Staphylococcus aureus and coagulase-negative staphylococci , 1982, Antimicrobial Agents and Chemotherapy.

[102]  R. Lacey Antibiotic resistance in Staphylococcus aureus and streptococci. , 1984, British medical bulletin.

[103]  R. Goering,et al.  Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus , 1983, Antimicrobial Agents and Chemotherapy.

[104]  J. Boyce,et al.  Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat , 2006, The Lancet.

[105]  W. Bannwarth,et al.  Identical genes for trimethoprim‐resistant dihydrofolate reductase from Staphylococcus aureus in Australia and Central Europe , 1990, FEBS letters.

[106]  M. Page,et al.  Structure and function of the dihydropteroate synthase from Staphylococcus aureus. , 1997, Journal of molecular biology.

[107]  M. Gillespie,et al.  Antibiotic susceptibilities and plasmid profiles of nosocomial methicillin-resistant Staphylococcus aureus: a retrospective study. , 1984, Journal of medical microbiology.

[108]  N. Strynadka,et al.  In Vitro Selection and Characterization of Ceftobiprole-Resistant Methicillin-Resistant Staphylococcus aureus , 2008, Antimicrobial Agents and Chemotherapy.

[109]  H. Zhang,et al.  A Proteolytic Transmembrane Signaling Pathway and Resistance to β-Lactams in Staphylococci , 2001, Science.

[110]  H. Hamashima,et al.  Distribution of the antiseptic-resistance genes qacE and qacE delta 1 in gram-negative bacteria. , 1998, FEMS microbiology letters.

[111]  A. Holck,et al.  The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. , 1998, FEMS microbiology letters.

[112]  D. Dubnau,et al.  Characterization of a plasmid-specified ribosome methylase associated with macrolide resistance. , 1981, Nucleic acids research.

[113]  M. Gillespie,et al.  Structural and evolutionary relationships of beta-lactamase transposons from Staphylococcus aureus. , 1988, Journal of general microbiology.

[114]  P Huovinen,et al.  Trimethoprim and sulfonamide resistance , 1995, Antimicrobial agents and chemotherapy.

[115]  Robert S. Daum,et al.  Novel Type of Staphylococcal Cassette Chromosome mec Identified in Community-Acquired Methicillin-Resistant Staphylococcus aureus Strains , 2002, Antimicrobial Agents and Chemotherapy.

[116]  L. Grinius,et al.  A staphylococcal multidrug resistance gene product is a member of a new protein family. , 1992, Plasmid.

[117]  R. Novick Staphylococcal plasmids and their replication. , 1989, Annual review of microbiology.

[118]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[119]  R. Hancock,et al.  Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. , 2006, Biochimica et biophysica acta.

[120]  K. Hiramatsu Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. , 2001, The Lancet. Infectious diseases.

[121]  B. Howden Recognition and management of infections caused by vancomycin‐intermediate Staphylococcus aureus (VISA) and heterogenous VISA (hVISA) , 2005, Internal medicine journal.

[122]  J. L. Johnston,et al.  Plasmid-encoded trimethoprim resistance in staphylococci , 1986, Antimicrobial Agents and Chemotherapy.

[123]  H. Murakami,et al.  Contribution of a Thickened Cell Wall and Its Glutamine Nonamidated Component to the Vancomycin Resistance Expressed by Staphylococcus aureus Mu50 , 2000, Antimicrobial Agents and Chemotherapy.

[124]  D. Robinson,et al.  Evolutionary Models of the Emergence of Methicillin-Resistant Staphylococcus aureus , 2003, Antimicrobial Agents and Chemotherapy.

[125]  G. Kaatz,et al.  Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. , 2008, Microbiology.

[126]  M. Arthur,et al.  Requirement of the VanY and VanX D,D‐peptidases for glycopeptide resistance in enterococci , 1998, Molecular microbiology.

[127]  G. Archer,et al.  Conjugative transfer genes in staphylococcal isolates from the United States , 1991, Antimicrobial Agents and Chemotherapy.

[128]  P. Courvalin,et al.  Heterologous Expression of the Enterococcal vanA Operon in Methicillin-Resistant Staphylococcus aureus , 2004, Antimicrobial Agents and Chemotherapy.

[129]  S. D. Murphy,et al.  Mercury and Organomercurial Resistances Determined by Plasmids in Staphylococcus aureus , 1977, Journal of bacteriology.

[130]  S. Iordanescu Recombinant plasmid obtained from two different, compatible staphylococcal plasmids , 1975, Journal of bacteriology.

[131]  C. Walsh,et al.  Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci , 1992, Antimicrobial Agents and Chemotherapy.

[132]  J. Quinn,et al.  Acquisition of a natural resistance gene renders a clinical strain of methicillin‐resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid , 2007, Molecular microbiology.

[133]  W. Grubb,et al.  Transposition of gentamicin resistance to staphylococcal plasmids encoding resistance to cationic agents. , 1984, The Journal of antimicrobial chemotherapy.

[134]  Q. C. Truong-Bolduc,et al.  MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus , 2005, Journal of bacteriology.

[135]  L. Peterson A review of tigecycline--the first glycylcycline. , 2008, International journal of antimicrobial agents.

[136]  Neville Firth,et al.  Complete Nucleotide Sequence of pSK41: Evolution of Staphylococcal Conjugative Multiresistance Plasmids , 1998, Journal of bacteriology.

[137]  Toshiki Maruyama,et al.  Novel Mechanism of Antibiotic Resistance Originating in Vancomycin-Intermediate Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[138]  K. Ubukata,et al.  Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones , 1990, Journal of bacteriology.

[139]  I. Kurokawa,et al.  Characterization of the pTZ2162 encoding multidrug efflux gene qacB from Staphylococcus aureus. , 2008, Plasmid.

[140]  F. Schmitz,et al.  Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. , 2001, The Journal of antimicrobial chemotherapy.

[141]  Denise E. Waldron,et al.  Sau1: a Novel Lineage-Specific Type I Restriction-Modification System That Blocks Horizontal Gene Transfer into Staphylococcus aureus and between S. aureus Isolates of Different Lineages , 2006, Journal of bacteriology.

[142]  M. Arthur,et al.  Contribution of VanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors , 1994, Antimicrobial Agents and Chemotherapy.

[143]  B. Collins,et al.  Neomycin-resistant Staphylococcus aureus in a burns unit , 1964, Journal of Hygiene.

[144]  M. Pallen,et al.  Mutations Affecting the Rossman Fold of Isoleucyl-tRNA Synthetase Are Correlated with Low-Level Mupirocin Resistance in Staphylococcus aureus , 2002, Antimicrobial Agents and Chemotherapy.

[145]  F. Kayser,et al.  Aminocyclitol-modifying enzymes specified by chromosomal genes in Staphylococcus aureus , 1981, Antimicrobial Agents and Chemotherapy.

[146]  L. Cui,et al.  Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[147]  T. Wichelhaus,et al.  Differential effect of rpoB mutations on antibacterial activities of rifampicin and KRM-1648 against Staphylococcus aureus. , 2001, The Journal of antimicrobial chemotherapy.

[148]  L. Teng,et al.  Novel Characteristics of Community-Acquired Methicillin-Resistant Staphylococcus aureus Strains Belonging to Multilocus Sequence Type 59 in Taiwan , 2007, Antimicrobial Agents and Chemotherapy.

[149]  M. Sasatsu,et al.  Cloning and characterization of a novel chromosomal drug efflux gene in Staphylococcus aureus. , 2002, Biological & pharmaceutical bulletin.

[150]  L. Friedman,et al.  Genetic Changes That Correlate with Reduced Susceptibility to Daptomycin in Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[151]  S. Iida,et al.  CHAPTER 4 – Prokaryotic IS Elements , 1983 .

[152]  P. Tulkens,et al.  Aminoglycosides: Activity and Resistance , 1999, Antimicrobial Agents and Chemotherapy.

[153]  R. Skurray,et al.  Antimicrobial resistance of Staphylococcus aureus: genetic basis. , 1987, Microbiological reviews.

[154]  J. L. Johnston,et al.  DNA sequence and units of transcription of the conjugative transfer gene complex (trs) of Staphylococcus aureus plasmid pGO1 , 1993, Journal of bacteriology.

[155]  P. Courvalin,et al.  Aminoglycoside-modifying enzymes of Staphylococcus aureus; expression in Escherichia coli. , 1980, Gene.

[156]  A. Tomasz,et al.  Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus , 1984, Journal of bacteriology.

[157]  Teruyo Ito,et al.  A New Class of Genetic Element, Staphylococcus Cassette Chromosome mec, Encodes Methicillin Resistance in Staphylococcus aureus , 2000, Antimicrobial Agents and Chemotherapy.

[158]  T. Littlejohn,et al.  Efflux‐mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline‐ and sugar‐transport proteins , 1990, Molecular microbiology.

[159]  Xiao Xue Ma,et al.  Novel Type of Staphylococcal Cassette Chromosome mec in a Methicillin-Resistant Staphylococcus aureus Strain Isolated in Sweden , 2008, Antimicrobial Agents and Chemotherapy.

[160]  G. Archer,et al.  Conjugation and Broad Host Range Plasmids in Streptococci and Staphylococci , 1993 .

[161]  P. O’Toole,et al.  Novel Chromosomally Encoded Multidrug Efflux Transporter MdeA in Staphylococcus aureus , 2004, Antimicrobial Agents and Chemotherapy.

[162]  K. Hiramatsu,et al.  Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. , 1998, The Journal of antimicrobial chemotherapy.

[163]  J. Verhoef,et al.  Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. , 2001, The Journal of antimicrobial chemotherapy.

[164]  V. Miao,et al.  Natural products to drugs: daptomycin and related lipopeptide antibiotics. , 2005, Natural product reports.

[165]  J. Patel,et al.  Vancomycin-Resistant Staphylococcus aureus Isolates Associated with Inc18-Like vanA Plasmids in Michigan , 2007, Antimicrobial Agents and Chemotherapy.

[166]  T. Kirikae,et al.  Cloning and Characterization of a Novel Trimethoprim-Resistant Dihydrofolate Reductase from a Nosocomial Isolate of Staphylococcus aureus CM.S2 (IMCJ1454) , 2005, Antimicrobial Agents and Chemotherapy.

[167]  R. Brückner,et al.  Regulation of the inducible chloramphenicol acetyltransferase gene of the Staphylococcus aureus plasmid pUB112. , 1985, The EMBO journal.

[168]  D. Andersson,et al.  Persistence of antibiotic resistant bacteria. , 2003, Current opinion in microbiology.

[169]  D. Shanson Antibiotic-resistant Staphylococcus aureus. , 1981, The Journal of hospital infection.

[170]  J. Guesdon,et al.  Gene heterogeneity for tetracycline resistance in Staphylococcus spp , 1990, Antimicrobial Agents and Chemotherapy.

[171]  M. T. Parker,et al.  Methicillin resistance in Staphylococcus aureus. , 1970, Lancet.

[172]  R. Novick,et al.  Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. , 1988, Nucleic acids research.

[173]  G. Kaatz,et al.  Efflux-Related Resistance to Norfloxacin, Dyes, and Biocides in Bloodstream Isolates of Staphylococcus aureus , 2007, Antimicrobial Agents and Chemotherapy.

[174]  M. Struelens,et al.  The bacterial envelope as a target for novel anti-MRSA antibiotics. , 2008, Trends in pharmacological sciences.

[175]  J. Rood,et al.  Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants , 1999, Antimicrobial Agents and Chemotherapy.

[176]  W. Noble,et al.  Evolution of antibiotic resistance in Staphylococcus aureus: the role of the skin , 1978, The British journal of dermatology.

[177]  I. Chopra,et al.  Molecular basis of fusB‐mediated resistance to fusidic acid in Staphylococcus aureus , 2006, Molecular microbiology.

[178]  J. Quinn,et al.  Development of Daptomycin Resistance In Vivo in Methicillin-Resistant Staphylococcus aureus , 2005, Journal of Clinical Microbiology.

[179]  S. Solomon,et al.  Methicillin-resistant–Staphylococcus aureus Hospitalizations, United States , 2005, Emerging infectious diseases.