Physics of the single-shocked and reshocked Richtmyer–Meshkov instability

This paper presents a numerical study of a single-shocked turbulent mixing layer using high-order accurate implicit large-eddy simulations (ILES) for low- and high-amplitude (linear and non-linear) perturbations and for a reshocked turbulent layer. It investigates the differences in flow physics between these three cases, examining a recent proposition that single-shocked high-amplitude initial perturbations can be employed to model a reshocked turbulent layer. At early times, the shocked high-amplitude perturbation has high levels of mixing; however, at later times, it grows in an almost identical manner to the low-amplitude case. Despite exploration of several choices of scaling to map the reshocked results to the single-shocked study, a satisfactory agreement could not be reached and mixing parameters remain disparate. The conclusion is that a single-shock interaction with a high-amplitude perturbation is not a good representation of reshock of a turbulent mixing layer.

[1]  Eleuterio F. Toro,et al.  Numerical Computation of Two-Dimensional Unsteady Detonation Waves in High Energy Solids , 1979 .

[2]  D. Drikakis,et al.  Assessment of very high order of accuracy in implicit LES models , 2007 .

[3]  E. Meshkov Instability of the interface of two gases accelerated by a shock wave , 1969 .

[4]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[5]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[6]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..

[7]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[8]  Ye Zhou,et al.  A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities , 2001 .

[9]  Dimitris Drikakis,et al.  On the solution of the compressible Navier- Stokes equations using improved flux vector splitting methods , 1993 .

[10]  Ben Thornber,et al.  Implicit large eddy simulation of ship airwakes , 2010, The Aeronautical Journal (1968).

[11]  Ben Thornber,et al.  Implicit Large-Eddy Simulation of a Deep Cavity Using High-Resolution Methods , 2008 .

[12]  Philippe Fillion,et al.  FLICA-OVAP: A new platform for core thermal–hydraulic studies , 2011 .

[13]  D. Drikakis,et al.  Chemically Reacting Flows around a Double-cone, Including Ablation Effects , 2010 .

[14]  D. Youngs,et al.  Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities , 1994 .

[15]  Smadar Karni,et al.  Viscous shock profiles and primitive formulations , 1992 .

[16]  D. Drikakis,et al.  The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability† , 2010, Journal of Fluid Mechanics.

[17]  D. Drikakis,et al.  Large eddy simulation using high-resolution and high-order methods , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  H. Robey,et al.  Onset of turbulence in accelerated high-Reynolds-number flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[20]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[21]  D. Drikakis Advances in turbulent flow computations using high-resolution methods , 2003 .

[22]  G. Dimonte Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation , 2000 .

[23]  Patrick Jenny,et al.  Correction of Conservative Euler Solvers for Gas Mixtures , 1997 .

[24]  P. Dimotakis The mixing transition in turbulent flows , 2000, Journal of Fluid Mechanics.

[25]  Peter A. Amendt,et al.  Indirect-Drive Noncryogenic Double-Shell Ignition Targets for the National Ignition Facility: Design and Analysis , 2001 .

[26]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[27]  Dimitris Drikakis,et al.  On the implicit large eddy simulations of homogeneous decaying turbulence , 2007, J. Comput. Phys..

[28]  Michael Zingale,et al.  Low Mach Number Modeling of Type Ia Supernovae , 2005 .

[29]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[30]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[31]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[32]  D. Drikakis,et al.  Large eddy simulation of compressible turbulence using high‐resolution methods , 2005 .

[33]  D. Drikakis,et al.  Assessment of Large-Eddy Simulation of Internal Separated Flow , 2009 .

[34]  Dimitris Drikakis,et al.  Implicit large-eddy simulation of swept-wing flow using high-resolution methods , 2009 .

[35]  E. Puckett,et al.  A High-Order Godunov Method for Multiple Condensed Phases , 1996 .

[36]  Ben Thornber,et al.  Implicit large eddy simulation for unsteady multi-component compressible turbulent flows , 2007 .

[37]  D. Layzer,et al.  On the Instability of Superposed Fluids in a Gravitational Field. , 1955 .

[38]  F. Grinstein,et al.  The bipolar behavior of the Richtmyer–Meshkov instability , 2011 .

[39]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[40]  A. S. Almgren,et al.  Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .

[41]  Ye Zhou,et al.  Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Kyu Hong Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process , 2005 .

[43]  R. P. Drake,et al.  The time scale for the transition to turbulence in a high Reynolds number, accelerated flow , 2003 .

[44]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[45]  Daniel D. Joseph,et al.  Nonlinear dynamics and turbulence , 1983 .

[46]  Ben Thornber,et al.  Growth of a Richtmyer-Meshkov turbulent layer after reshock , 2011 .

[47]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[48]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[49]  Ben Thornber,et al.  An algorithm for LES of premixed compressible flows using the Conditional Moment Closure model , 2011, J. Comput. Phys..

[50]  Stéphane Dellacherie,et al.  The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..

[51]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[52]  R. Abgrall,et al.  Comparisons of several upwind schemes for multi-component one-dimensional inviscid flows , 1989 .