Basic Properties of the Rank of Matrices over a Field

Basic Properties of the Rank of Matrices over a Field In this paper I present selected properties of triangular matrices and basic properties of the rank of matrices over a field. I define a submatrix as a matrix formed by selecting certain rows and columns from a bigger matrix. That is in my considerations, as an array, it is cut down to those entries constrained by row and column. Then I introduce the concept of the rank of a m x n matrix A by the condition: A has the rank r if and only if, there is a r x r submatrix of A with a non-zero determinant, and for every k x k submatrix of A with a non-zero determinant we have k ≤ r. At the end, I prove that the rank defined by the size of the biggest submatrix with a non-zero determinant of a matrix A, is the same as the maximal number of linearly independent rows of A.

[1]  Eugeniusz Kusak Abelian Groups, Fields and Vector Spaces 1 , 1990 .

[2]  Czesław Bylí,et al.  Binary Operations , 2019, Problem Solving in Mathematics and Beyond.

[3]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[4]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[5]  Wojciech A. Trybulec Non-contiguous Substrings and One-to-one Finite Sequences , 1990 .

[6]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[7]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[8]  Czes Law Byli´nski,et al.  Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[9]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[10]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[11]  Wojciech A. Trybulec Linear Combinations in Vector Space , 1990 .

[12]  Yatsuka Nakamura,et al.  Determinant of Some Matrices of Field Elements , 2006 .

[13]  Katarzyna Jankowska,et al.  Transpose Matrices and Groups of Permutations , 1991 .

[14]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[15]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[16]  Katarzyna Jankowska,et al.  Matrices. Abelian Group of Matrices , 1991 .

[17]  Andrzej Trybulec,et al.  Function Domains and Frænkel Operator , 1990 .

[18]  Katarzyna Zawadzka The Product and the Determinant of Matrices with Entries in a Field , 2004 .

[19]  Grzegorz Bancerek,et al.  Product of Families of Groups and Vector Spaces , 1992 .

[20]  Katarzyna Zawadzka,et al.  Sum and Product of Finite Sequences of Elements of a Field , 1992 .

[21]  Karol Pąk,et al.  Basic Properties of Determinants of Square Matrices over a Field1 , 2007 .

[22]  Yozo Toda,et al.  The Formalization of Simple Graphs , 1996 .

[23]  Karol Pak,et al.  Laplace Expansion , 2007 .

[24]  Czeslaw Bylinski Binary Operations Applied to Finite Sequences , 1990 .

[25]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[26]  Xiquan Liang,et al.  Some Properties of Some Special Matrices , 2005 .

[27]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[28]  Wojciech A. Trybulec BASIS FOR A VECTOR SPACE , 1990 .

[29]  Wojciech A. Trybulec Pigeon Hole Principle , 1990 .

[30]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[31]  W. Neville Holmes,et al.  Binary Arithmetic , 2007, Computer.

[32]  Rafał Kwiatek Factorial and Newton Coefficients Rafał Kwiatek Nicolaus , 1990 .

[33]  Wojciech A. Trybulec Vectors in Real Linear Space , 1990 .

[34]  Wojciech A. Trybulec Binary Operations on Finite Sequences , 1990 .

[35]  Wojciech A. Trybulec Subspaces and Cosets of Subspaces in Vector Space , 1990 .

[36]  Mariusz Żynel,et al.  The Steinitz Theorem and the Dimension of a Vector Space , 1995 .