Fabrication Variations and Defect Tolerance for Nanomagnet-Based QCA

Tolerating defects and fabrication variations will be critical in any system made with devices that have nanometer feature sizes. This paper considers how fabrication variations and defects might lead to faulty behavior in Magnetic Quantum-dot Cellular Automata (MQCA) circuits and systems. Here, we leverage physical-level simulation to consider how fabrication variations might affect a circuit's logical correctness. We then discuss how we can tolerate fabrication variations at the device, circuit, and architectural level.

[1]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[2]  Michael T. Niemier,et al.  Fault Models and Yield Analysis for QCA-Based PLAs , 2007, 2007 International Conference on Field Programmable Logic and Applications.

[3]  L. K. Verma,et al.  Magnetic domain patterns in a zigzag nanowire , 2007 .

[4]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[5]  Suhwan Kim,et al.  A resonant clock generator for single-phase adiabatic systems , 2001, ISLPED '01.

[6]  Michael T. Niemier,et al.  Defect tolerance in QCA-based PLAs , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[7]  Gary H. Bernstein,et al.  Spatial density of lines exposed in poly(methylmethacrylate) by electron beam lithography , 1993 .

[8]  W. Porod,et al.  Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[9]  A. Imre Majority Logic Gate for Magnetic Quantum-Dot , 2007 .

[10]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[11]  Stephen McVitie,et al.  Quantitative imaging of magnetic domain walls in thin films using Lorentz and magnetic force microscopies , 2001 .

[12]  Chao Liu,et al.  Nonmagnetic shell in surfactant-coated FePt nanoparticles , 2004 .

[13]  Gary H. Bernstein,et al.  Stability of Thin Resist Walls , 1992 .

[14]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[15]  Russell P. Cowburn,et al.  Micromagnetics Simulation of Deep-Submicron Supermalloy Disks , 2001 .

[16]  Lugli,et al.  Simulation of power gain and dissipation in field-coupled nanomagnets , 2004 .

[17]  Alexandra Imre,et al.  Experimental study of nanomagnets for magnetic quantum-dot cellular automata (MQCA) logic applications , 2005 .

[18]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .