D/H isotopic fractionation between brucite Mg(OH)2 and water from first-principles vibrational modeling

[1]  M. Lazzeri,et al.  Anharmonicity of inner-OH stretching modes in hydrous phyllosilicates: assessment from first-principles frozen-phonon calculations , 2007 .

[2]  M. Lazzeri,et al.  Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory , 2007 .

[3]  D. Cole,et al.  Pressure effects on the reduced partition function ratio for hydrogen isotopes in water , 2006 .

[4]  B. Reynard,et al.  High-pressure behavior of synthetic antigorite in the MgO-SiO2-H2O system from Raman spectroscopy , 2006 .

[5]  B. Reynard,et al.  Determination of trace element partition coefficients between water and minerals by high‐pressure and high‐temperature experiments: Leaching technique , 2005 .

[6]  B. Reynard,et al.  Boron isotopic fractionation between minerals and fluids: New insights from in situ high pressure-high temperature vibrational spectroscopic data , 2005 .

[7]  R. Zeebe Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4 , 2005 .

[8]  F. Martín,et al.  Refined relationship between the position of the fundamental OH stretching and the first overtones for clays , 2004 .

[9]  L. Stixrude,et al.  High-pressure proton disorder in brucite , 2004 .

[10]  R. Orlando,et al.  Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity , 2004 .

[11]  B. Reynard,et al.  High-pressure behaviour of serpentine minerals: a Raman spectroscopic study , 2004 .

[12]  G. Rossman,et al.  Theoretical estimates of equilibrium chromium-isotope fractionations , 2004 .

[13]  D. Cole,et al.  Experimental and theoretical study of pressure effects on hydrogen isotope fractionation in the system brucite-water at elevated temperatures , 2002 .

[14]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[15]  M. Lazzeri,et al.  First-principles calculation of the infrared spectrum of hematite , 2002 .

[16]  A. Marco Saitta,et al.  First-principles modeling of the infrared spectrum of kaolinite , 2001 .

[17]  E. D. Oliveira,et al.  Infrared study and isotopic effect of magnesium hydroxide , 2001 .

[18]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[19]  M. Parrinello,et al.  PRESSURE-INDUCED FRUSTRATION AND DISORDER IN MG(OH)2 AND CA(OH)2 , 1999 .

[20]  Yong‐Fei Zheng,et al.  Experimental studies of oxygen and hydrogen isotope fractionations between precipitated brucite and water at low temperatures , 1999 .

[21]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[22]  Guo Jibao,et al.  HYDROGEN ISOTOPE FRACTIONATION AND HYDROGEN DIFFUSION IN THE TOURMALINE-WATER SYSTEM , 1997 .

[23]  T. Driesner The Effect of Pressure on Deuterium-Hydrogen Fractionation in High-Temperature Water , 1997 .

[24]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[25]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  H. Lutz,et al.  Near-infrared spectra of M(OH)Cl (M = Ca, Cd, Sr), Zn(OH)F, γ-Cd(OH)2, Sr(OH)2, and brucite-type hydroxides M(OH)2 (M = Mg, Ca, Mn, Fe, Co, Ni, Cd)☆ , 1996 .

[28]  P. McMillan,et al.  Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 18O-substituted calcite , 1996 .

[29]  J. R. O'neil,et al.  Hydrogen isotope exchange reactions between hydrous minerals and molecular hydrogen: I. A new approach for the determination of hydrogen isotope fractionation at moderate temperatures , 1996 .

[30]  S. Hull,et al.  Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study , 1995 .

[31]  J. Horita,et al.  Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature , 1994 .

[32]  K. Leinenweber,et al.  Pressure-induced H bonding: Neutron diffraction study of brucite, Mg(OD)2, to 9.3 GPa P = 9.3 GPa , 1994 .

[33]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[34]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[35]  William H. Press,et al.  Numerical recipes , 1990 .

[36]  R. Harmon,et al.  Experimental study of hydrogen-isotope exchange between aluminous chlorite and water and of hydrogen diffusion in chlorite , 1987 .

[37]  S. Matsuo,et al.  Hydrogen isotopic fractionation factor between brucite and water in the temperature range from 100° to 510° C , 1984 .

[38]  R. Harmon,et al.  Experimental hydrogen isotope studies; hydrogen isotope exchange between amphibole and water , 1984 .

[39]  Susan Werner Kieffer,et al.  Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high‐pressure thermodynamic properties , 1982 .

[40]  T. Heaton,et al.  Experimental hydrogen isotope studies—I. Systematics of hydrogen isotope fractionation in the systems epidote-H2O, zoisite-H2O and AlO(OH)-H2O , 1980 .

[41]  Susan Werner Kieffer,et al.  Thermodynamics and lattice vibrations of minerals: 1. Mineral heat capacities and their relationships to simple lattice vibrational models , 1979 .

[42]  H. Sakai,et al.  D/H fractionation factors between serpentine and water at 100° to 500°C and 2000 bar water pressure, and the D/H ratios of natural serpentines , 1978 .

[43]  P. Richet,et al.  A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules , 1977 .

[44]  S. Epstein,et al.  Hydrogen isotope fractionation between OH-bearing minerals and water , 1976 .

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  G. Wilkinson,et al.  The polarized infra-red and Raman spectra of Mg(OH)2 and Ca(OH)2 , 1973 .

[47]  H. Taylor,et al.  Oxygen and hydrogen isotope studies of the serpentinization of ultramafic rocks in oceanic environments and continental ophiolite complexes , 1973 .

[48]  J. Bigeleisen,et al.  Calculation of Equilibrium Constants for Isotopic Exchange Reactions , 1947 .

[49]  Gian-Marco Rignanese,et al.  First-principle studies of the lattice dynamics of crystals, and related properties , 2005 .

[50]  J. Birck An Overview of Isotopic Anomalies in Extraterrestrial Materials and Their Nucleosynthetic Heritage , 2004 .

[51]  E. Schauble Applying Stable Isotope Fractionation Theory to New Systems , 2004 .

[52]  J. Horita,et al.  A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote-water system , 1999 .

[53]  R. Clayton High temperature isotope effects in the early solar system , 1986 .

[54]  J. R. O'neil Theoretical and experimental aspects of isotopic fractionation , 1986 .

[55]  S. S. Mitra Vibration Spectra of Solids , 1962 .

[56]  H. Urey,et al.  The thermodynamic properties of isotopic substances. , 1947, Journal of the Chemical Society.