Design of Passivation Layers on Axial Junction GaAs Nanowire Solar Cells

We design a surface passivation scheme for axial junction GaAs nanowire solar cells and simulate its performance by coupled optical and electrical simulations. This design uses a wide bandgap AlGaAs shell layer to generate modulation doping in the active region and protect photogenerated carriers from the surface and top contact. The design has both excellent optical and electrical properties and achieves 21.3% power conversion efficiency when using realistic material parameters, which is 2.7 times higher than an optimized bare nanowire. Furthermore, the design is largely insensitive to surface quality and junction position, assuming moderate bulk material quality.

[1]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[2]  R. LaPierre,et al.  Sulfur passivation and contact methods for GaAs nanowire solar cells , 2011, Nanotechnology.

[3]  John A Rogers,et al.  In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. , 2011, Nano letters.

[4]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[5]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[6]  W. Prost,et al.  n‐GaAs/InGaP/p‐GaAs Core‐Multishell Nanowire Diodes for Efficient Light‐to‐Current Conversion , 2012 .

[7]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors , 1999 .

[8]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[9]  Lars Samuelson,et al.  Axial InP nanowire tandem junction grown on a silicon substrate. , 2011, Nano letters.

[10]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[11]  Anuj R. Madaria,et al.  Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. , 2012, Nano letters.

[12]  Z. Mi,et al.  InN p-i-n Nanowire Solar Cells on Si , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  E. Bakkers,et al.  Efficiency enhancement of InP nanowire solar cells by surface cleaning. , 2013, Nano letters.

[14]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[15]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[16]  T. Kuech,et al.  Minority‐carrier recombination kinetics and transport in ‘‘surface‐free’’ GaAs/AlxGa1−xAs double heterostructures , 1993 .

[17]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[18]  Yu Cao,et al.  GaAs nanowire array solar cells with axial p-i-n junctions. , 2014, Nano letters.

[19]  T. Fukui,et al.  GaAs/InGaP Core–Multishell Nanowire-Array-Based Solar Cells , 2013 .

[20]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[21]  安達 定雄,et al.  Optical constants of crystalline and amorphous semiconductors : numerical data and graphical information , 1999 .

[22]  J. Etheridge,et al.  Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. , 2013, Nano letters.

[23]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.

[24]  Ray R. LaPierre,et al.  Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell , 2011 .

[25]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[26]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[27]  Ningfeng Huang,et al.  Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon , 2012 .

[28]  W. Mönch Semiconductor Surfaces and Interfaces , 1994 .

[29]  Ningfeng Huang,et al.  Broadband absorption of semiconductor nanowire arrays for photovoltaic applications , 2012 .

[30]  Chennupati Jagadish,et al.  Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. , 2012, Nano letters.

[31]  L. Coldren,et al.  Effects of surface recombination on carrier distributions and device characteristics , 1995 .

[32]  Giacomo Mariani,et al.  Patterned radial GaAs nanopillar solar cells. , 2011, Nano letters.

[33]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[34]  Yi Cui,et al.  Design and growth of III–V nanowire solar cell arrays on low cost substrates , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[35]  H. Hasegawa,et al.  Surface passivation technology for III–V semiconductor nanoelectronics , 2008 .

[36]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[37]  Long Wen,et al.  Theoretical consideration of III–V nanowire/Si triple-junction solar cells , 2012, Nanotechnology.

[38]  Michael Grätzel,et al.  Gallium arsenide p-i-n radial structures for photovoltaic applications , 2009 .