Radix-4 Recoded Multiplier on Quantum-Dot Cellular Automata

This paper describes the implementation of an advanced multiplication algorithm on quantum-dot cellular automata (QCA) nanotechnology, promising molecular density circuits with extreme operating frequencies, using a single homogeneous layer of the basic cells. The multiplier layout is verified with time-dependent quantum mechanical simulation, to ensure stable ground state computation under the fine-grained pipelining constraints of the technology. The novel design utilizes radix-4 modified Booth recoding and ultra-fast carry-save addition, resulting in stall-free pipeline operation, with twice the throughput of the previous sequential structure and minimized active circuit area.

[1]  Amir Fijany,et al.  Bit-Serial Adder Based on Quantum Dots , 2003 .

[2]  Earl E. Swartzlander,et al.  Serial Parallel Multiplier Design in Quantum-dot Cellular Automata , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[3]  Alexei O. Orlov,et al.  Clocked quantum-dot cellular automata devices: experimental studies , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[4]  Graham A. Jullien,et al.  Performance comparison of quantum-dot cellular automata adders , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[5]  Ismo Hänninen,et al.  Robust Adders Based on Quantum-Dot Cellular Automata , 2007, 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP).

[6]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[7]  W. Porod,et al.  Quantum-dot cellular automata , 1999 .

[8]  Ismo Hänninen,et al.  Binary Adders on Quantum-Dot Cellular Automata , 2010, J. Signal Process. Syst..

[9]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[10]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[11]  Vassil S. Dimitrov,et al.  Computer arithmetic structures for quantum cellular automata , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[12]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[13]  Peter M. Kogge,et al.  General floorplan for reversible quantum-dot cellular automata , 2007, CF '07.

[14]  Ramesh Karri,et al.  The Robust QCA Adder Designs Using Composable QCA Building Blocks , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  C. Lent,et al.  Quantum-dot cellular automata: an architecture for molecular computing , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[16]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[17]  Ismo Hänninen,et al.  Binary multipliers on quantum-dot cellular automata , 2007 .

[18]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[19]  Ismo Hänninen,et al.  Pipelined array multiplier based on quantum-dot cellular automata , 2007, 2007 18th European Conference on Circuit Theory and Design.

[20]  Graham A. Jullien,et al.  Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata , 2006, Proceedings of the IEEE.

[21]  W. Porod,et al.  Quantum-dot cellular automata , 1999 .