Reverse vaccinology: developing vaccines in the era of genomics.

The sequence of microbial genomes made all potential antigens of each pathogen available for vaccine development. This increased by orders of magnitude potential vaccine targets in bacteria, parasites, and large viruses and revealed virtually all their CD4(+) and CD8(+) T cell epitopes. The genomic information was first used for the development of a vaccine against serogroup B meningococcus, and it is now being used for several other bacterial vaccines. In this review, we will first summarize the impact that genome sequencing has had on vaccine development, and then we will analyze how the genomic information can help further our understanding of immunity to infection or vaccination and lead to the design of better vaccines by diving into the world of T cell immunity.

[1]  C. Pitcher,et al.  Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. , 2001, Journal of immunological methods.

[2]  R C Slack,et al.  What is a community? , 1998, Public health.

[3]  Todd M. Allen,et al.  Effects of thymic selection of the T cell repertoire on HLA-class I associated control of HIV infection , 2010, Nature.

[4]  D. Altmann,et al.  An Epitope of Bacillus anthracis Protective Antigen That Is Cryptic in Rabbits May Be Immunodominant in Humans , 2010, Infection and Immunity.

[5]  Philip J. R. Goulder,et al.  PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression , 2006, Nature.

[6]  Philip J. R. Goulder,et al.  Phenotypic Analysis of Antigen-Specific T Lymphocytes , 1996, Science.

[7]  A. T. Glenny,et al.  Diphtheria Toxoid as an Immunising Agent. , 1923 .

[8]  T. Schumacher,et al.  Design and use of conditional MHC class I ligands , 2006, Nature Medicine.

[9]  F. Marincola,et al.  Comprehensive epitope mapping of the Epstein–Barr virus latent membrane protein-2 in normal, non tumor-bearing individuals , 2007, Cancer Immunology, Immunotherapy.

[10]  R. Eisenberg,et al.  Dominance and Diversity in the Primary Human CD4 T Cell Response to Replication-Competent Vaccinia Virus1 , 2007, The Journal of Immunology.

[11]  D. Heckerman,et al.  Adaptive Interactions between HLA and HIV-1: Highly Divergent Selection Imposed by HLA Class I Molecules with Common Supertype Motifs , 2010, The Journal of Immunology.

[12]  F. Ennis,et al.  Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. , 2010, Future microbiology.

[13]  H. Tettelin,et al.  Identification of a Universal Group B Streptococcus Vaccine by Multiple Genome Screen , 2005, Science.

[14]  L. Mitchell,et al.  A new categorization of HLA DR alleles on a functional basis. , 1998, Human immunology.

[15]  Mario Roederer,et al.  HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. , 2006, Blood.

[16]  Morten Nielsen,et al.  A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules , 2006, PLoS Comput. Biol..

[17]  M. Gavin,et al.  CD8 CTL from Genital Herpes Simplex Lesions: Recognition of Viral Tegument and Immediate Early Proteins and Lysis of Infected Cutaneous Cells1 , 2001, The Journal of Immunology.

[18]  A Sette,et al.  Meta‐analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine‐related issues , 2009, Parasite immunology.

[19]  T. Schwartz,et al.  The persistence of neutralizing antibodies after revaccination against smallpox. , 1990, The Journal of infectious diseases.

[20]  L. Sigal,et al.  Antibodies and CD8+ T Cells Are Complementary and Essential for Natural Resistance to a Highly Lethal Cytopathic Virus1 , 2005, The Journal of Immunology.

[21]  Bjoern Peters,et al.  HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Schumacher,et al.  MHC multimer technology: current status and future prospects. , 2005, Current opinion in immunology.

[23]  P. Nigam,et al.  Long-Lived Poxvirus Immunity, Robust CD4 Help, and Better Persistence of CD4 than CD8 T Cells , 2004, Journal of Virology.

[24]  G. Grandi,et al.  Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli ΔtolR IHE3034 Mutant*S , 2008, Molecular & Cellular Proteomics.

[25]  John Sidney,et al.  A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach , 2008, PLoS Comput. Biol..

[26]  Mario Roederer,et al.  Frontline : Polyfunctional T cell responses are a hallmark of HIV-2 infection , 2008 .

[27]  D. Heckerman,et al.  Viral adaptation to immune selection pressure by HLA class I–restricted CTL responses targeting epitopes in HIV frameshift sequences , 2010, The Journal of experimental medicine.

[28]  Marion Pepper,et al.  Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. , 2007, Immunity.

[29]  M. Lifton,et al.  Dominant CD8+ T-Lymphocyte Responses Suppress Expansion of Vaccine-Elicited Subdominant T Lymphocytes in Rhesus Monkeys Challenged with Pathogenic Simian-Human Immunodeficiency Virus , 2009, Journal of Virology.

[30]  Bette T. Korber,et al.  Relative Dominance of Gag p24-Specific Cytotoxic T Lymphocytes Is Associated with Human Immunodeficiency Virus Control , 2006, Journal of Virology.

[31]  F. Ennis,et al.  Human cytotoxic T-cell memory: long-lived responses to vaccinia virus , 1996, Journal of virology.

[32]  Irini A. Doytchinova,et al.  In Silico Identification of Supertypes for Class II MHCs1 , 2005, The Journal of Immunology.

[33]  Bjoern Peters,et al.  Naive Precursor Frequencies and MHC Binding Rather Than the Degree of Epitope Diversity Shape CD8+ T Cell Immunodominance1 , 2008, The Journal of Immunology.

[34]  Bjoern Peters,et al.  Two Kinetic Patterns of Epitope-Specific CD8 T-Cell Responses following Murine Gammaherpesvirus 68 Infection , 2010, Journal of Virology.

[35]  D. Heckerman,et al.  Founder Effects in the Assessment of HIV Polymorphisms and HLA Allele Associations , 2007, Science.

[36]  Anne S De Groot,et al.  HIV vaccine development by computer assisted design: the GAIA vaccine. , 2005, Vaccine.

[37]  Todd M. Allen,et al.  HIV evolution: CTL escape mutation and reversion after transmission , 2004, Nature Medicine.

[38]  Magdalini Moutaftsi,et al.  Correlates of protection efficacy induced by vaccinia virus‐specific CD8+ T‐cell epitopes in the murine intranasal challenge model , 2009, European journal of immunology.

[39]  Magdalini Moutaftsi,et al.  Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities. , 2008, Immunity.

[40]  Bjoern Peters,et al.  Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population , 2009, Proceedings of the National Academy of Sciences.

[41]  Todd M. Allen,et al.  CD8+ Lymphocytes from Simian Immunodeficiency Virus-Infected Rhesus Macaques Recognize 14 Different Epitopes Bound by the Major Histocompatibility Complex Class I Molecule Mamu-A*01: Implications for Vaccine Design and Testing , 2001, Journal of Virology.

[42]  Pierre Baldi,et al.  A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray , 2010, Proceedings of the National Academy of Sciences.

[43]  S. H. van der Burg,et al.  Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. , 2009, The New England journal of medicine.

[44]  M. Feinberg,et al.  Differences and Similarities in Viral Life Cycle Progression and Host Cell Physiology after Infection of Human Dendritic Cells with Modified Vaccinia Virus Ankara and Vaccinia Virus , 2006, Journal of Virology.

[45]  Bjoern Peters,et al.  HLA class I supertypes: a revised and updated classification , 2008, BMC Immunology.

[46]  B. Haynes,et al.  Immunization with Cocktail of HIV-Derived Peptides in Montanide ISA-51 Is Immunogenic, but Causes Sterile Abscesses and Unacceptable Reactogenicity , 2010, PloS one.

[47]  G. Pantaleo,et al.  Functional signatures of protective antiviral T‐cell immunity in human virus infections , 2006, Immunological reviews.

[48]  John Sidney,et al.  Reversion of CTL escape–variant immunodeficiency viruses in vivo , 2004, Nature Medicine.

[49]  Morten Nielsen,et al.  Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan , 2008, PLoS Comput. Biol..

[50]  David Heckerman,et al.  CD8+ T-cell responses to different HIV proteins have discordant associations with viral load , 2007, Nature Medicine.

[51]  J. Venter,et al.  Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. , 2000, Science.

[52]  O. Lund,et al.  NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence , 2007, PloS one.

[53]  O. Lund,et al.  Definition of supertypes for HLA molecules using clustering of specificity matrices , 2004, Immunogenetics.

[54]  S. Hansen,et al.  Duration of antiviral immunity after smallpox vaccination , 2003, Nature Medicine.

[55]  G. Freeman,et al.  Restoring function in exhausted CD8 T cells during chronic viral infection , 2006, Nature.

[56]  Alessandro Sette,et al.  Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia , 2000, Nature.

[57]  J. Saurat,et al.  Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function , 2000, Gene Therapy.

[58]  Bjoern Peters,et al.  Cutting Edge: Murine Cytomegalovirus Induces a Polyfunctional CD4 T Cell Response1 , 2008, The Journal of Immunology.

[59]  Eileen Kraemer,et al.  EuPathDB: a portal to eukaryotic pathogen databases , 2009, Nucleic Acids Res..

[60]  Arlo Z. Randall,et al.  Profiling humoral immune responses to P. falciparum infection with protein microarrays , 2008, Proteomics.

[61]  A. Tabilio,et al.  Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial , 2005, The Lancet.

[62]  Devan V Mehrotra,et al.  Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial , 2008, The Lancet.

[63]  V. Appay,et al.  Phenotype and function of human T lymphocyte subsets: Consensus and issues , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[64]  G. Pantaleo,et al.  HIV-1-specific IFN-gamma/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S Buus,et al.  Description and prediction of peptide-MHC binding: the 'human MHC project'. , 1999, Current opinion in immunology.

[66]  J. Sidney,et al.  HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. , 1998, Current opinion in immunology.

[67]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[68]  G. Karupiah,et al.  Correlates of protective immunity in poxvirus infection: where does antibody stand? , 2008, Immunology and cell biology.

[69]  Bjoern Peters,et al.  An analysis of the epitope knowledge related to Mycobacteria , 2007, Immunome research.

[70]  John Sidney,et al.  Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. G. Fitzgerald,et al.  DIPHTHERIA TOXOID AS AN IMMUNIZING AGENT. , 1927, Canadian Medical Association journal.

[72]  E. Jenner An Inquiry into the Causes and Effects of the Variolae Vaccinae A Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire, and Known by the Name of the Cow Pox , 2010 .

[73]  C. Howard,et al.  Recent Advances in the Development of Peptide Vaccines for Hepatitis B , 2001, Intervirology.

[74]  Ronna R Mallios,et al.  A consensus strategy for combining HLA-DR binding algorithms. , 2003, Human immunology.

[75]  D. Flower,et al.  Identifiying Human MHC Supertypes Using Bioinformatic Methods , 2004, The Journal of Immunology.

[76]  Deborah Hix,et al.  PATRIC: The VBI PathoSystems Resource Integration Center , 2006, Nucleic Acids Res..

[77]  Bjoern Peters,et al.  The CD8+ T-Cell Response to Lymphocytic Choriomeningitis Virus Involves the L Antigen: Uncovering New Tricks for an Old Virus , 2007, Journal of Virology.

[78]  D. Watkins,et al.  T-Cell Correlates of Vaccine Efficacy after a Heterologous Simian Immunodeficiency Virus Challenge , 2010, Journal of Virology.

[79]  R. Steinman,et al.  Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. , 1999, Journal of immunology.

[80]  L. Stern,et al.  Human CD4+ T Cell Epitopes from Vaccinia Virus Induced by Vaccination or Infection , 2007, PLoS pathogens.

[81]  R. Rappuoli,et al.  A universal vaccine for serogroup B meningococcus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  C. Midgley,et al.  Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. , 2005, The Journal of general virology.

[83]  Rino Rappuoli,et al.  Reverse vaccinology. , 2000, Current opinion in microbiology.

[84]  Mark M. Davis,et al.  Enumeration and Characterization of Memory Cells in the TH Compartment , 1996, Immunological reviews.

[85]  E. Carter,et al.  Analyzing Mycobacterium tuberculosis proteomes for candidate vaccine epitopes. , 2005, Tuberculosis.

[86]  Rick L. Stevens,et al.  National Institute of Allergy and Infectious Diseases Bioinformatics Resource Centers: New Assets for Pathogen Informatics , 2007, Infection and Immunity.

[87]  Magdalini Moutaftsi,et al.  A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus , 2006, Nature Biotechnology.

[88]  D. Koelle,et al.  Diversity in the Acute CD8 T Cell Response to Vaccinia Virus in Humans 1 2 , 2005, The Journal of Immunology.

[89]  M. Kalin,et al.  Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies , 2008, The Journal of experimental medicine.

[90]  M. Hilleman,et al.  Vaccine against human hepatitis B. , 1976, JAMA.

[91]  Julie A McMurry,et al.  Diversity of Francisella tularensis Schu4 antigens recognized by T lymphocytes after natural infections in humans: identification of candidate epitopes for inclusion in a rationally designed tularemia vaccine. , 2007, Vaccine.

[92]  C. Sylvester-Hvid,et al.  One-Pot, Mix-and-Read Peptide-MHC Tetramers , 2008, PloS one.

[93]  Matthew S. Cook,et al.  Immunodominant Tuberculosis CD8 Antigens Preferentially Restricted by HLA-B , 2007, PLoS pathogens.

[94]  W. Kastenmuller,et al.  Cross-Priming of Cytotoxic T Cells Dictates Antigen Requisites for Modified Vaccinia Virus Ankara Vector Vaccines , 2007, Journal of Virology.

[95]  M. John,et al.  Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype , 2007, Proceedings of the National Academy of Sciences.

[96]  G. Grandi,et al.  Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. , 2007, Vaccine.

[97]  Christopher N. Larsen,et al.  BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence , 2007, Nucleic Acids Res..

[98]  E. Sercarz,et al.  Determinant spreading and the dynamics of the autoimmune T-cell repertoire. , 1993, Immunology today.

[99]  A. Sette,et al.  Linear PADRE T Helper Epitope and Carbohydrate B Cell Epitope Conjugates Induce Specific High Titer IgG Antibody Responses1 , 2000, The Journal of Immunology.

[100]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[101]  S Brunak,et al.  Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project.". , 2000, Reviews in immunogenetics.

[102]  W. Mcclements,et al.  A simple and efficient method for the monitoring of antigen-specific T cell responses using peptide pool arrays in a modified ELISpot assay. , 2001, Journal of immunological methods.

[103]  M. Robb Failure of the Merck HIV vaccine: an uncertain step forward , 2008, The Lancet.

[104]  R. Rappuoli Reverse vaccinology : Genomics , 2000 .

[105]  The Meningococcal Vaccine Candidate GNA1870 Binds the Complement Regulatory Protein Factor H and Enhances Serum Resistance , 2006, The Journal of Immunology.

[106]  Lei Huang,et al.  A probabilistic meta-predictor for the MHC class II binding peptides , 2007, Immunogenetics.

[107]  Bette Korber,et al.  Mosaic HIV-1 Vaccines Expand the Breadth and Depth of Cellular Immune Responses in Rhesus Monkeys , 2010, Nature Medicine.

[108]  J. Lieberman,et al.  Vaccinia Virus Induces Strong Immunoregulatory Cytokine Production in Healthy Human Epidermal Keratinocytes: a Novel Strategy for Immune Evasion , 2005, Journal of Virology.

[109]  G. Bensi,et al.  Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome , 2006, Nature Biotechnology.

[110]  Qing Zhang,et al.  Immune epitope database analysis resource (IEDB-AR) , 2008, Nucleic Acids Res..

[111]  Ren-Huan Xu,et al.  Direct Presentation Is Sufficient for an Efficient Anti-Viral CD8+ T Cell Response , 2010, PLoS pathogens.

[112]  Paul Shapshak,et al.  A framework to sub-type HLA supertypes. , 2005, Frontiers in bioscience : a journal and virtual library.

[113]  Julie A McMurry,et al.  In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. , 2009, Vaccine.

[114]  J. McMurry,et al.  Confirmation of Immunogenic Consensus Sequence HIV-1 T-cell Epitopes in Bamako, Mali and Providence, Rhode Island , 2006, Human vaccines.

[115]  D. Molina,et al.  An Extremely Diverse CD4 Response to Vaccinia Virus in Humans Is Revealed by Proteome-Wide T-Cell Profiling , 2008, Journal of Virology.

[116]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[117]  Tin Wee Tan,et al.  In silico grouping of peptide/HLA class I complexes using structural interaction characteristics , 2007, Bioinform..

[118]  David Heckerman,et al.  Adaptation of HIV-1 to human leukocyte antigen class I , 2009, Nature.

[119]  D. Altmann,et al.  Natural Exposure to Cutaneous Anthrax Gives Long-Lasting T Cell Immunity Encompassing Infection-Specific Epitopes , 2010, The Journal of Immunology.

[120]  A. Falus Clinical applications of immunomics , 2009 .

[121]  P. Roversi,et al.  Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates , 2009, Nature.

[122]  H. Ploegh,et al.  The CD8 T-Cell Response against Murine Gammaherpesvirus 68 Is Directed toward a Broad Repertoire of Epitopes from both Early and Late Antigens , 2008, Journal of Virology.

[123]  A. Wald,et al.  Immunodominance among herpes simplex virus-specific CD8 T cells expressing a tissue-specific homing receptor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[124]  B. Gärtner,et al.  PD‐1 Expression and IL‐2 Loss of Cytomegalovirus‐ Specific T Cells Correlates with Viremia and Reversible Functional Anergy , 2008, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[125]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.

[126]  Vladimir Brusic,et al.  Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research , 2008, BMC Bioinformatics.

[127]  Magdalini Moutaftsi,et al.  Vaccinia Virus-Specific CD4+ T Cell Responses Target a Set of Antigens Largely Distinct from Those Targeted by CD8+ T Cell Responses1 , 2007, The Journal of Immunology.

[128]  V. Brusic,et al.  Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research , 2008, BMC Immunology.

[129]  F. Fenner Smallpox and its eradication , 1988 .

[130]  K. Garcia,et al.  New Design of MHC Class II Tetramers to Accommodate Fundamental Principles of Antigen Presentation1 , 2009, The Journal of Immunology.

[131]  R. Koup,et al.  Analysis of Total Human Immunodeficiency Virus (HIV)-Specific CD4+ and CD8+ T-Cell Responses: Relationship to Viral Load in Untreated HIV Infection , 2001, Journal of Virology.

[132]  Bjoern Peters,et al.  A Protective Role for Dengue Virus-Specific CD8+ T Cells 1 , 2009, The Journal of Immunology.

[133]  R. Rappuoli From Pasteur to genomics: progress and challenges in infectious diseases , 2004, Nature Medicine.

[134]  R. Rappuoli,et al.  Rationally designed strings of promiscuous CD4+ T cell epitopes provide help to Haemophilus influenzae type b oligosaccharide: a model for new conjugate vaccines , 2001, European journal of immunology.

[135]  John F. B. Mitchell,et al.  Quantifying the uncertainty in forecasts of anthropogenic climate change , 2000, Nature.

[136]  Ellis L Reinherz,et al.  Definition of MHC Supertypes Through Clustering of MHC Peptide Binding Repertoires , 2004, ICARIS.

[137]  M. Slifka,et al.  Vaccinated: One Man’s Quest to Defeat the World’s Deadliest Diseases , 2007 .

[138]  J. Yewdell,et al.  The DRiP hypothesis decennial: support, controversy, refinement and extension. , 2006, Trends in immunology.

[139]  William Martin,et al.  Epitope-Based Immunome-Derived Vaccines: A Strategy for Improved Design and Safety , 2008, Clinical Applications of Immunomics.

[140]  Luis Villarreal,et al.  Cutting Edge: Long-Term B Cell Memory in Humans after Smallpox Vaccination 1 , 2003, The Journal of Immunology.

[141]  D. Watkins,et al.  Vaccine-Induced Cellular Responses Control Simian Immunodeficiency Virus Replication after Heterologous Challenge , 2009, Journal of Virology.

[142]  Bjoern Peters,et al.  Diverse recognition of conserved orthopoxvirus CD8+ T cell epitopes in vaccinated rhesus macaques. , 2009, Vaccine.

[143]  Tomer Hertz,et al.  Identifying HLA supertypes by learning distance functions , 2007, Bioinform..

[144]  Morten Nielsen,et al.  MHC Class II epitope predictive algorithms , 2010, Immunology.

[145]  Gary J. Nabel,et al.  New Generation Vaccines , 1990 .

[146]  Rosanna Lagos,et al.  Vaccines and Vaccination in Historical Perspective , 2009 .

[147]  M F del Guercio,et al.  Several common HLA-DR types share largely overlapping peptide binding repertoires. , 1998, Journal of immunology.

[148]  M. Manns,et al.  Therapeutic vaccination of chronic hepatitis C nonresponder patients with the peptide vaccine IC41. , 2008, Gastroenterology.

[149]  Leonard Moise,et al.  Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A (H1N1) virus with epitopes in 2008-2009 conventional influenza vaccine. , 2009, Vaccine.