An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks

We have assembled a database of stars having both masses determined from measured orbital dynamics and sufficient spectral and photometric information for their placement on a theoretical H-R diagram. Our sample consists of 115 low-mass (M < 2.0 M_☉) stars, 27 pre-main-sequence and 88 main-sequence. We use a variety of available pre-main-sequence evolutionary calculations to test the consistency of predicted stellar masses with dynamically determined masses. Despite substantial improvements in model physics over the past decade, large systematic discrepancies still exist between empirical and theoretically derived masses. For main-sequence stars, all models considered predict masses consistent with dynamical values above 1.2 M_☉ and some models predict consistent masses at solar or slightly lower masses, but no models predict consistent masses below 0.5 M_☉, with all models systematically underpredicting such low masses by 5%-20%. The failure at low masses stems from the poor match of most models to the empirical main sequence below temperatures of 3800 K, at which molecules become the dominant source of opacity and convection is the dominant mode of energy transport. For the pre-main-sequence sample we find similar trends. There is generally good agreement between predicted and dynamical masses above 1.2 M_☉ for all models. Below 1.2 M_☉ and down to 0.3 M_☉ (the lowest mass testable), most evolutionary models systematically underpredict the dynamically determined masses by 10%-30%, on average, with the Lyon group models predicting marginally consistent masses in the mean, although with large scatter. Over all mass ranges, the usefulness of dynamical mass constraints for pre-main-sequence stars is in many cases limited by the random errors caused by poorly determined luminosities and especially temperatures of young stars. Adopting a warmer-than-dwarf temperature scale would help reconcile the systematic pre-main-sequence offset at the lowest masses, but the case for this is not compelling, given the similar warm offset at older ages between most sets of tracks and the empirical main sequence. Over all age ranges, the systematic discrepancies between track-predicted and dynamically determined masses appear to be dominated by inaccuracies in the treatment of convection and in the adopted opacities.

[1]  D. Popper A Pre--Main-Sequence Star in the Detached Binary EK Cephei , 1987 .

[2]  P. Demarque,et al.  α Centauri AB , 2000 .

[3]  D. Popper Orbits of detached main-sequence eclipsing binaries of types late F to K. II. UV leonis, UV piscium, and BH virginis. , 1997 .

[4]  David F. Gray,et al.  SPECTRAL LINE-DEPTH RATIOS AS TEMPERATURE INDICATORS FOR COOL STARS , 1994 .

[5]  Nicholas B. Suntzeff,et al.  The Pre-Main-Sequence Eclipsing Binary TY Coronae Australis: Precise Stellar Dimensions and Tests of Evolutionary Models , 1998 .

[6]  John N. Bahcall,et al.  Standard solar models, with and without helium diffusion and the solar neutrino problem , 1992 .

[7]  L. Hartmann,et al.  An Age Estimate for the beta Pictoris Analog HR 4796A , 1995 .

[8]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[9]  Robert L. Kurucz,et al.  New Opacity Calculations , 1991 .

[10]  A. Cameron,et al.  EVOLUTION OF STARS OF LOW MASS , 1967 .

[11]  S. Stahler The birthline for low-mass stars , 1983 .

[12]  M. Skrutskie,et al.  L Dwarfs and the Substellar Mass Function , 1999, astro-ph/9905170.

[13]  E. Lastennet,et al.  Detached double-lined eclipsing binaries as critical tests of stellar evolution - Age and metallicity determinations from the HR diagram , 2002, astro-ph/0211501.

[14]  G. Basri,et al.  Hamilton echelle spectra of young stars. I: Optical veiling , 1990 .

[15]  Michael S. Bessell,et al.  The Late M Dwarfs , 1991 .

[16]  On the Rotational Evolution of Young Low-Mass Stars , 1997 .

[17]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[18]  Dynamical Masses of Young Stars in Multiple Systems , 2003, astro-ph/0307020.

[19]  P. Ventura,et al.  First Results on Pre-Main-Sequence Evolution, Including a Magnetic Field , 2000 .

[20]  F. Rogers,et al.  Radiative atomic Rosseland mean opacity tables , 1992 .

[21]  Andrew F. Boden,et al.  Testing Models of Stellar Evolution for Metal-poor Stars: An Interferometric-spectroscopic Orbit for the Binary HD 195987 , 2002 .

[22]  France.,et al.  A standard stellar library for evolutionary synthesis - II. The M dwarf extension , 1997, astro-ph/9710350.

[23]  S. Zucker,et al.  Component Masses of the Young Spectroscopic Binary UZ Tau E , 2002, astro-ph/0210106.

[24]  I. Mazzitelli,et al.  Stellar Turbulent Convection: A New Model and Applications , 1991 .

[25]  D. Latham,et al.  Absolute dimensions and masses of IT cassiopeiae. , 1997 .

[26]  Werner Däppen,et al.  The equation of state for stellar envelopes. II - Algorithm and selected results , 1988 .

[27]  F. Palla,et al.  The pre-main-sequence evolution of intermediate-mass stars , 1993 .

[28]  Andrea M. Ghez,et al.  A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri , 1999, astro-ph/9902318.

[29]  O. Franz,et al.  The Nearby Low-Mass Visual Binary Wolf 424 , 1999 .

[30]  M. Pinsonneault,et al.  The Angular Momentum Evolution of Very Low Mass Stars , 2000, astro-ph/0001065.

[31]  C. Dullemond,et al.  The pre-main sequence spectroscopic binary AK Scorpii revisited , 2003 .

[32]  T. University,et al.  A Dynamical Mass Constraint for Pre-Main-Sequence Evolutionary Tracks: The Binary NTT 045251+3016 , 2001, astro-ph/0105017.

[33]  I. Ribas,et al.  The 0.4-$M_{\odot}$ eclipsing binary CU Cancri - Absolute dimensions, comparison with evolutionary models and possible evidence for a circumstellar dust disk , 2002, astro-ph/0211086.

[34]  A Spectroscopic Survey of Subarcsecond Binaries in the Taurus-Auriga Dark Cloud with the Hubble Space Telescope , 2002, astro-ph/0209608.

[35]  V. Tamazian,et al.  Preliminary Orbits and System Masses for Five Binary T Tauri Stars , 2002 .

[36]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[37]  J. Valenti,et al.  T Tauri stars in blue , 1993 .

[38]  D. VandenBerg Oxygen-enhanced models for globular cluster stars. I: Evolutionary tracks , 1992 .

[39]  L. Hartmann,et al.  A new optical extinction law and distance estimate for the Taurus-Auriga molecular cloud , 1994 .

[40]  R. Schulz,et al.  A spectrum of the veiled T Tauri star CY Tau. , 1994 .

[41]  John N. Bahcall,et al.  Screening in Thermonuclear Reaction Rates in the Sun , 1998 .

[42]  Jens Viggo Clausen,et al.  The Absolute Dimensions of Eclipsing Binaries. XXII. The Unevolved F-Type System HS Hydrae , 1997 .

[43]  Arthur D. Code,et al.  Empirical effective temperatures and bolometric corrections for early-type stars , 1976 .

[44]  P. Massey,et al.  The stellar content of NGC 346: A plethora of O stars in the SMC , 1989 .

[45]  J. Liebert,et al.  Spectroscopy of a Young Brown Dwarf in the ρ Ophiuchi Cluster , 1997 .

[46]  F. Allard,et al.  New Evolutionary Tracks for Very Low Mass Stars , 1995 .

[47]  Dimitri Pourbaix,et al.  Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses , 2000 .

[48]  A Census of the Young Cluster IC 348 , 2003, astro-ph/0304409.

[49]  J. Tennyson,et al.  The effective temperature and metallicity of CM Draconis , 1997 .

[50]  Italo Mazzitelli,et al.  New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convecti on model , 1994 .

[51]  I. Iben Stellar evolution. i - the approach to the main sequence. , 1965 .

[52]  Roger A. Bell,et al.  The effective temperatures and colours of G and K stars , 1989 .

[53]  M. Pinsonneault,et al.  Standard solar model , 1992 .

[54]  B. Mason,et al.  Binary Star Orbits From Speckle Interferometry. IX. The Nearby Solar-Type Speckle-Spectroscopic Binary Fin 347 AA , 1995 .

[55]  P. A. Bernasconi Grids of pre-main sequence stellar models. The accretion scenario at Z=0.001 and Z=0.020 , 1996 .

[56]  New grids of ATLAS9 atmospheres I: Influence of convection treatments on model structure and on observable quantities , 2002, astro-ph/0206156.

[57]  Italy.,et al.  Evaluating GAIA performances on eclipsing binaries , 2001, Astronomy &amp; Astrophysics.

[58]  A. Cameron,et al.  EARLY AND MAIN SEQUENCE EVOLUTION OF STARS IN THE RANGE 0.5 TO 100 SOLAR MASSES , 1967 .

[59]  I. Mazzitelli,et al.  Further improvements of a new model for turbulent convection in stars , 1992 .

[60]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[61]  D. Latham,et al.  The Hyades Binaries θ1 Tauri and θ2 Tauri: The Distance to the Cluster and the Mass-Luminosity Relation , 1997 .

[62]  F. D’Antona,et al.  The Universe and Globular Clusters: An Age Conflict? , 1997 .

[63]  Dimitri Mihalas,et al.  The equation of state for stellar envelopes. I - An occupation probability formalism for the truncation of internal partition functions , 1988 .

[64]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[65]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[66]  P. Cassen,et al.  Disk Accretion and the Stellar Birthline , 1997 .

[67]  A. Prša,et al.  Evaluating GAIA performances on eclipsing binaries. II. Orbits and stellar parameters for V781 Tau, UV Leo and GK Dra , 2003, astro-ph/0303573.

[68]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[69]  Don A. VandenBerg,et al.  Empirically Constrained Color-Temperature Relations. I. BV(RI)C , 2003 .

[70]  A. Dutrey,et al.  The BP Tau disk: A missing link between class II and III objects? , 2003 .

[71]  P. A. Bernasconi,et al.  Grids of stellar models - VIII. From 0.4 to 1.0 ${M_{\odot}}$ at $Z=0.020$ and $Z=0.001$, with the MHD equation of state , 1998 .

[72]  I. Reid,et al.  The faintest stars: infrared photometry, spectra, and bolometric magnitudes , 1993 .

[73]  Martin G. Cohen,et al.  Observational studies of pre-main-sequence evolution. , 1979 .

[74]  Spectroscopy of Brown Dwarf Candidates in the ρ Ophiuchi Molecular Core , 1998, astro-ph/9810508.

[75]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[76]  C. Garmany,et al.  On winds and X-rays of O-type stars , 1991 .

[77]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[78]  J. E. Tabor,et al.  Radiative otacity tables for 40 stellar mixtures , 1976 .

[79]  F. D’Antona,et al.  Evolution of very low mass stars and brown dwarfs. I. The minimum main-sequence mass and luminosity. , 1985 .

[80]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[81]  P. P. Eggleton,et al.  Approximate input physics for stellar modelling , 1995 .

[82]  I. Ribas,et al.  Chemical composition of eclipsing binaries: a new approach to the helium-to-metal enrichment ratio , 2000 .

[83]  Keivan G. Stassun,et al.  Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 M☉ Primary and a 0.7 M☉ Secondary , 2003, astro-ph/0312575.

[84]  Johannes Andersen,et al.  Accurate masses and radii of normal stars , 1991 .

[85]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[86]  Ignasi Ribas,et al.  Absolute Dimensions of the M-Type Eclipsing Binary YY Geminorum (Castor C): A Challenge to Evolutionary Models in the Lower Main Sequence* , 2001 .

[87]  T. Observatory,et al.  Evaluating GAIA performances on eclipsing binaries. III. Orbits and stellar parameters for UW LMi, V432 Aur and CN Lyn , 2003, astro-ph/0310061.

[88]  H. R. Johnson,et al.  An opacity-sampled treatment of water vapor , 1989 .

[89]  F. Vrba,et al.  A spectroscopic survey of the Taurus-Auriga dark clouds for pre-main-sequence stars having CA II H, K emission. , 1986 .

[90]  D. Alexander,et al.  Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints , 2000 .

[91]  T. Greene,et al.  Astrophysics of Young Star Binaries , 2002, astro-ph/0211376.

[92]  D. Alexander,et al.  The Y2 Isochrones for α-Element Enhanced Mixtures , 2002, astro-ph/0208175.

[93]  Pierre Demarque,et al.  The Y2 Stellar Evolutionary Tracks , 2002, astro-ph/0210201.

[94]  Dynamical Masses of T Tauri Stars and Calibration of Pre-Main-Sequence Evolution , 2000, astro-ph/0008370.

[95]  Eugene F. Milone,et al.  The eclipsing binary AI Phoenicis : new results based on an improved light curve analysis program , 1992 .

[96]  Christopher D. Koresko,et al.  Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri , 1999 .

[97]  A. Cameron,et al.  On the formation of stars from disk accretion. , 1984 .

[98]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[99]  S. Strom,et al.  Are wide pre-main-sequence binaries coeval? , 1994 .

[100]  CD Tau: a detached eclipsing binary with a solar-mass companion , 1999, astro-ph/9905110.

[101]  D. G. Hummer,et al.  The equation of state for stellar envelopes. III - Thermodynamic quantities , 1988 .

[102]  F. Rogers,et al.  The Hyades lithium problem revisited , 1994 .

[103]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[104]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2002 .

[105]  Robert D. Mathieu,et al.  The Low-Mass Double-Lined Eclipsing Binary CM Draconis , 1994 .

[106]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[107]  William A. Fowler,et al.  Thermonuclear Reaction Rates, III , 1967 .

[108]  Richard B. Larson,et al.  The Collapse of a Rotating Cloud , 1972 .

[109]  R. Humphreys,et al.  The initial mass function for massive stars in the Galaxy and the Magellanic Clouds , 1984 .

[110]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[111]  John P. Cox,et al.  Principles of stellar structure , 1968 .

[112]  D. VandenBerg Star clusters and stellar evolution. I. Improved synthetic color-magnitude diagrams for the oldest clusters. , 1983 .

[113]  D. Popper Orbits of Detached Main-Sequence Eclipsing Binaries of Types Late F to K. I.RT Andromedae and CG Cygni , 1994 .