Some results on linear codes over the ring $$\mathbb {Z}_4+u\mathbb {Z}_4+v\mathbb {Z}_4+uv\mathbb {Z}_4$$Z4+uZ4+vZ4+uvZ4

In this paper, we mainly study the theory of linear codes over the ring $$R =\mathbb {Z}_4+u\mathbb {Z}_4+v\mathbb {Z}_4+uv\mathbb {Z}_4$$R=Z4+uZ4+vZ4+uvZ4. By using the Chinese Remainder Theorem, we prove that R is isomorphic to a direct sum of four rings. We define a Gray map $$\Phi $$Φ from $$R^{n}$$Rn to $$\mathbb {Z}_4^{4n}$$Z44n, which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over $$\mathbb {Z}_4$$Z4. We also discuss some properties of MDS codes over R. Furthermore, we study the MacWilliams identities of linear codes over R and give the generator polynomials of cyclic codes over R.

[1]  Jian Gao,et al.  Some Results on Linear Codes over $\mathbb{Z}_4+v\mathbb{Z}_4$. , 2014 .

[2]  Suat Karadeniz,et al.  Linear codes over F2+uF2+vF2+uvF2 , 2010, Des. Codes Cryptogr..

[3]  Suat Karadeniz,et al.  Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..

[4]  Thomas Blackford,et al.  Negacyclic Codes Over of Even Length , 2003 .

[5]  Shixin Zhu,et al.  (1 − uv)-constacyclic codes over $\mathbb{F}_p + u\mathbb{F}_p + v\mathbb{F}_p + uv\mathbb{F}_p $ , 2014 .

[6]  B. R. McDonald Finite Rings With Identity , 1974 .

[7]  Suat Karadeniz,et al.  Linear codes over F 2 + uF 2 + vF 2 + uvF 2 . , 2010 .

[8]  Keisuke Shiromoto Singleton Bounds for Codes over Finite Rings , 2000 .

[9]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[10]  Shixin Zhu,et al.  Constacyclic codes of arbitrary lengths over ring $$Z_{p^m } + vZ_{p^m }$$ , 2014 .

[11]  Steven T. Dougherty,et al.  Maximum distance codes over rings of order 4 , 2001, IEEE Trans. Inf. Theory.

[12]  Taher Abualrub,et al.  Skew cyclic codes of arbitrary length , 2011, Int. J. Inf. Coding Theory.

[13]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[14]  Shixin Zhu,et al.  A family of constacyclic codes over F2 + uF2 + vF2 + uvF2 , 2012, J. Syst. Sci. Complex..

[15]  T. Aaron Gulliver,et al.  MDS and self-dual codes over rings , 2012, Finite Fields Their Appl..

[16]  Suat Karadeniz,et al.  Cyclic codes over F2+uF2+vF2+uvF2 , 2011, Des. Codes Cryptogr..

[17]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[18]  Jianzhang Chen,et al.  Cyclic codes of arbitrary length over Fq + uFq + u 2 Fq + ::: + u k 1 Fq , 2013 .

[19]  Suat Karadeniz,et al.  Cyclic codes over $${{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}$$ , 2011 .

[20]  Yang Shanlin,et al.  MacWilliams Identities of Linear Codes over Non-principal ideal Ring F_-p+vF_-p , 2011 .

[21]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[22]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[23]  Minjia Shi,et al.  Some Results on Cyclic Codes Over ${F}_{2}+v{F}_{2}$ , 2010, IEEE Transactions on Information Theory.

[24]  Patrick Solé,et al.  Cyclic codes over M2(F2) , 2013, J. Frankl. Inst..