Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments

The workshop participants recommended the creation of a joint IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) to coordinate future (and to some extent existing) IGAC and SPARC chemistry-climate model evaluation and associated modelling activities. The CCMI has now been approved by both the IGAC and SPARC scientific steering committees at their respective steering committee meetings. The IGAC/ SPARC CCMI is superseding the SPARC Chemistry-Climate Model Validation (CCMVal) activity, expanding the goals and deliverables of CCMVal to include tropospheric chemistry-climate questions.

[1]  Rolando R. Garcia,et al.  Long‐term middle atmospheric influence of very large solar proton events , 2009 .

[2]  Veronika Eyring,et al.  Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios , 2010 .

[3]  D. Weisenstein,et al.  A two‐dimensional model of sulfur species and aerosols , 1997 .

[4]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[5]  Veronika Eyring,et al.  SPARC Report on the Evaluation of Chemistry-Climate Models , 2010 .

[6]  L. Thomason,et al.  SAGE II measurements of stratospheric aerosol properties at non-volcanic levels , 2007 .

[7]  K. Taylor,et al.  The Geoengineering Model Intercomparison Project (GeoMIP) , 2011 .

[8]  B. Naujokat,et al.  An Update of the Observed Quasi-Biennial Oscillation of the Stratospheric Winds over the Tropics , 1986 .

[9]  Martyn P. Chipperfield,et al.  A study of stratospheric chlorine partitioning based on new satellite measurements and modeling , 2008 .

[10]  S. Brönnimann,et al.  Uncertainties in modelling the stratospheric warming following Mt. Pinatubo eruption , 2013 .

[11]  Veronika Eyring,et al.  A Summary of the CMIP5 Experiment Design , 2010 .

[12]  Keywan Riahi,et al.  Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period , 2011 .

[13]  Sami K. Solanki,et al.  Reconstruction of solar UV irradiance in cycle 23 , 2006 .

[14]  Wolfgang Knorr,et al.  Determinants and predictability of global wildfire emissions , 2012 .

[15]  Kevin W. Bowman,et al.  The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations , 2011 .

[16]  E. O. Hulburt,et al.  SORCE CONTRIBUTIONS TO NEW UNDERSTANDING OF GLOBAL CHANGE AND SOLAR VARIABILITY , 2005 .

[17]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[18]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[19]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[20]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[21]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[22]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[23]  R. Stothers,et al.  Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar-Extinction Period, 1961-1978 , 2013 .

[24]  E. Dlugokencky,et al.  Atmospheric chemistry and greenhouse gases , 2001 .

[25]  G. P. Kyle,et al.  Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways , 2011 .

[26]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[27]  G. Müller,et al.  The Scientific Basis , 1995 .

[28]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[29]  J. Pereira,et al.  Global wildland fire emissions from 1960 to 2000 , 2008 .

[30]  P. Pilewskie,et al.  Recent variability of the solar spectral irradiance and its impact on climate modelling , 2012, 1303.5577.

[31]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[32]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[33]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[34]  D. Hauglustaine,et al.  Data composites of airborne observations of tropospheric ozone and its precursors , 2000 .

[35]  Patrick Jöckel,et al.  Development cycle 2 of the Modular Earth Submodel System (MESSy2) , 2010 .

[36]  E. Stehfest,et al.  RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C , 2011 .

[37]  Veronika Eyring,et al.  Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models , 2010 .

[38]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[39]  Greg Kopp,et al.  SORCE Contributions to New Understanding of Global Change and Solar Variability , 2005 .

[40]  N. Nakicenovic,et al.  RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .

[41]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[42]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2003 .