The Dirichlet problem for the Laplace equation in supershaped annuli

[1]  Yohan D. Fougerolle,et al.  Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems , 2012, PloS one.

[2]  Paolo Emilio Ricci,et al.  The Robin problem for the Laplace equation in a three-dimensional starlike domain , 2011, Appl. Math. Comput..

[3]  P. Natalini,et al.  The Robin problem for the Helmholtz equation in a starlike planar domain , 2011 .

[4]  Paolo Emilio Ricci,et al.  The Neumann problem for the Helmholtz equation in a starlike planar domain , 2010, Appl. Math. Comput..

[5]  Paolo Emilio Ricci,et al.  The Dirichlet problem for the Laplace equation in a starlike domain of a Riemann surface , 2008, Numerical Algorithms.

[6]  J. Gielis A generic geometric transformation that unifies a wide range of natural and abstract shapes. , 2003, American journal of botany.

[7]  Paolo Emilio Ricci,et al.  Symbolic Computation of Newton Sum Rules for the Zeros of Polynomial Eigenfunctions of Linear Differential Operators , 2001, Numerical Algorithms.

[8]  L. Carleson On convergence and growth of partial sums of Fourier series , 1966 .

[9]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[10]  J. Gielis,et al.  FOURIER-LIKE SOLUTION OF THE DIRICHLET PROBLEM FOR THE LAPLACE EQUATION IN K-TYPE GIELIS DOMAINS , 2011 .

[11]  P. Natalini,et al.  Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains , 2009 .

[12]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[13]  G. Tolstov Fourier Series , 1962 .