Field-resilient superconductivity in atomic-layer crystalline materials

A recent study [S. Yoshizawa {\it et al}., Nature Communications {\bf 12}, 1462 (2021)] reported the occurrence of field-resilient superconductivity, that is, enhancement of the in-plane critical magnetic field $H^{||}_{\rm c2}$ beyond the paramagnetic limiting field, in atomic-layer crystalline ($\sqrt{7}\times\sqrt{3}$)-In on a Si(111) substrate. The present article elucidates the origin of the observed field-resilient noncentrosymmetric superconductivity in this highly crystalline two-dimensional material. We develop the quasiclassical theory of superconductivity by incorporating the Fermi surface anisotropy together with an anisotropic spin splitting and texture specific to atomic-layer crystalline systems. In Si(111)-($\sqrt{7}\times\sqrt{3}$)-In, a typical material with a large antisymmetric spin-orbit coupling (ASOC), we show an example where the combination of the ASOC and disorder effect suppresses the paramagnetic depairing and can lead to an enhancement of $H^{||}_{\rm c2}$ compared to an isotropic system only when a magnetic field is applied in a particular direction due to an anisotropic spin texture. We also study the parity-mixing effect to demonstrate that the enhancement of $H^{||}_{\rm c2}$ is limited in the moderately clean regime because of the fragile $s$+$p$-wave pairing against nonmagnetic scattering in the case of the dominant odd-parity component of a pair wavefunction. Furthermore, from analysis of the transition line, we identify the field-resilience factor taking account of the scattering and suppression of paramagnetic effects and discuss the origin of the field-resilient superconductivity. Through fitting of the $H^{||}_{\rm c2}$ data, the normal-state electron scattering is discussed with a prime focus on the role of atomic steps on a Si(111) surface.

[1]  T. Uchihashi Surface atomic-layer superconductors with Rashba/Zeeman-type spin-orbit coupling , 2021, AAPPS Bulletin.

[2]  Shik Shin,et al.  Atomic-layer Rashba-type superconductor protected by dynamic spin-momentum locking , 2021, Nature Communications.

[3]  M. Weinert,et al.  Orbital Angular Momentum Induced Spin Polarization of 2D Metallic Bands. , 2020, Physical review letters.

[4]  J. Jia,et al.  Diamagnetic response of a superconducting surface superstructure: Si(111)- √7×√3 -In , 2019, Physical Review B.

[5]  T. Shirasawa,et al.  Structure determination of the Si(111)−7×3−In atomic-layer superconductor , 2019, Physical Review B.

[6]  A. Saranin,et al.  One-atom-layer compounds on silicon and germanium , 2017 .

[7]  Yasuharu Nakamura,et al.  Odd-parity superconductivity in bilayer transition metal dichalcogenides , 2017, 1707.05964.

[8]  Y. Iwasa,et al.  Highly crystalline 2D superconductors , 2017, 1703.03541.

[9]  P. Fulde,et al.  Critical magnetic field of ultrathin superconducting films and interfaces , 2017, 1701.09121.

[10]  M. Salamon,et al.  Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review , 2016, Reports on progress in physics. Physical Society.

[11]  T. Lemberger,et al.  Ultrathin two-dimensional superconductivity with strong spin–orbit coupling , 2016, Proceedings of the National Academy of Sciences.

[12]  T. Uchihashi Two-dimensional superconductors with atomic-scale thickness , 2016, 1608.06997.

[13]  Y. Nagai,et al.  Robust zero-energy bound states around a pair-density-wave vortex core in locally noncentrosymmetric superconductors , 2016, 1602.00425.

[14]  A. V. Matetskiy,et al.  Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111). , 2015, Physical review letters.

[15]  Yasuharu Nakamura,et al.  Superconductivity protected by spin–valley locking in ion-gated MoS2 , 2015, Nature Physics.

[16]  R. Masutomi,et al.  Effect of Parallel Magnetic Field on Superconductivity of Ultrathin Metal Films Grown on a Cleaved GaAs Surface , 2015, 1710.08212.

[17]  R. Ikeda,et al.  Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors , 2015, 1505.04559.

[18]  T. Nakayama,et al.  Impact of Surface Conditions on the Superconductivity of Si(111)-(√7 × √3)-In , 2015 .

[19]  M. Houzet,et al.  Quasiclassical theory of disordered Rashba superconductors , 2015, 1502.04504.

[20]  Y. Nagai,et al.  Vortex Core Structure in Multilayered Rashba Superconductors , 2014, 1408.4550.

[21]  T. Nakayama,et al.  Imaging Josephson vortices on the surface superconductor Si(111)-(√7×√3)-In using a scanning tunneling microscope. , 2014, Physical review letters.

[22]  Alexander A. Saranin,et al.  A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer , 2014, Scientific Reports.

[23]  Y. Nagai,et al.  Impurity Effect on the Local Density of States around a Vortex in Noncentrosymmetric Superconductors , 2013, 1310.5851.

[24]  R. Masutomi,et al.  Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field. , 2013, Physical review letters.

[25]  Yasuharu Nakamura,et al.  Multi-Orbital Superconductivity in SrTiO3 /LaAlO3 Interface and SrTiO3 Surface , 2013, 1307.2363.

[26]  M. Sigrist,et al.  Possible pairing symmetries in SrPtAs with a local lack of inversion center , 2012, 1208.2541.

[27]  M. Sigrist,et al.  Role of strong spin-orbit coupling in the superconductivity of the hexagonal pnictide SrPtAs , 2012 .

[28]  Y. Higashi,et al.  Effect of Born and unitary impurity scattering on the Kramer-Pesch shrinkage of a vortex core in an s-wave superconductor , 2011, 1110.5050.

[29]  Patrick A. Lee,et al.  Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures: possibility of finite momentum pairing. , 2011, Physical review letters.

[30]  M. Aono,et al.  Macroscopic superconducting current through a silicon surface reconstruction with indium adatoms: Si(111)-(√7 × √3)-In. , 2011, Physical review letters.

[31]  Xi Chen,et al.  Superconductivity in one-atomic-layer metal films grown on Si(111) , 2010 .

[32]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  K. Samokhin Upper critical field in noncentrosymmetric superconductors , 2008, 0805.3338.

[34]  M. Sigrist,et al.  Helical Superconductivity in Non-centrosymmetric Superconductors with Dominantly Spin Triplet Pairing , 2008 .

[35]  T. Mizushima,et al.  Vortex state in a Fulde-Ferrell-Larkin-Ovchinnikov superconductor based on quasiclassical theory , 2007, 0704.0483.

[36]  D. Agterberg,et al.  Magnetic-field-induced helical and stripe phases in Rashba superconductors , 2007 .

[37]  M. Sigrist,et al.  Non-centrosymmetric Superconductivity and Antiferromagnetic Order: Microscopic Discussion of CePt3Si , 2007, cond-mat/0702478.

[38]  O. Dimitrova,et al.  Theory of a two-dimensional superconductor with broken inversion symmetry , 2007, cond-mat/0701698.

[39]  M. Sigrist,et al.  Phenomenological theory of the s-wave state in superconductors without an inversion center , 2006 .

[40]  M. Sigrist,et al.  Temperature dependence of the superfluid density in a noncentrosymmetric superconductor , 2005, cond-mat/0510546.

[41]  M. Sigrist,et al.  Basic properties of a vortex in a noncentrosymmetric superconductor , 2005, cond-mat/0510548.

[42]  M. Sigrist,et al.  Helical vortex phase in the noncentrosymmetric CePt3Si. , 2004, Physical review letters.

[43]  M. Sigrist,et al.  Spin susceptibility in superconductors without inversion symmetry , 2004, cond-mat/0405179.

[44]  M. Sigrist,et al.  Superconductivity without inversion symmetry: MnSi versus CePt3Si. , 2003, Physical review letters.

[45]  E. Rotenberg,et al.  Indium square root 7 x square root 3 on Si(111): a nearly free electron metal in two dimensions. , 2003, Physical review letters.

[46]  O. Dimitrova,et al.  Phase diagram of a surface superconductor in parallel magnetic field , 2003, cond-mat/0304445.

[47]  L. Gor’kov,et al.  Inhomogeneous stripe phase revisited for surface superconductivity. , 2002, Physical review letters.

[48]  L. Gor’kov,et al.  Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. , 2001, Physical review letters.

[49]  P. Hedegård,et al.  A simple tight-binding model of spin–orbit splitting of sp-derived surface states , 2000 .

[50]  H. Shimahara,et al.  Interplay of Fulde–Ferrell–Larkin–Ovchinnikov and Vortex States in Two-Dimensional Superconductors , 1999, cond-mat/9909124.

[51]  A. Finkel'stein,et al.  Suppression of superconductivity in homogeneously disordered systems , 1994 .

[52]  Haviland,et al.  Onset of superconductivity in the two-dimensional limit. , 1989, Physical review letters.

[53]  Haviland,et al.  Threshold for superconductivity in ultrathin amorphous gallium films. , 1986, Physical review. B, Condensed matter.

[54]  P. Anderson Structure of "triplet" superconducting energy gaps , 1984 .

[55]  R. Meservey,et al.  Spin-orbit scattering in superconducting thin films , 1976 .

[56]  M. R. Beasley,et al.  Theory of the upper critical field in layered superconductors , 1975 .

[57]  M. Strongin,et al.  Destruction of Superconductivity in Disordered Near-Monolayer Films , 1970 .

[58]  K. Maki Effect of Pauli Paramagnetism on Magnetic Properties of High-Field Superconductors , 1966 .

[59]  J. Friedel,et al.  Etude du couplage spin-orbite dans les metaux de transition. Application au platine , 1964 .

[60]  Philip W. Anderson,et al.  Theory of dirty superconductors , 1959 .

[61]  N. Lebedev,et al.  Magnetic properties of layered superconductors with weak interaction between the layers , 2011 .

[62]  Private Communications , 2001 .

[63]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .