Multiscale Computations for Highly Oscillatory Problems

We review a selection of essential techniques for constructing computational multiscale methods for highly oscillatory ODEs. Contrary to the typical approaches that attempt to enlarge the stability region for specialized problems, these lecture notes emphasize how multiscale properties of highly oscillatory systems can be characterized and approximated in a truly multiscale fashion similar to the settings of averaging and homogenization. Essential concepts such as resonance, fast-slow scale interactions, averaging, and techniques for transformations to non-stiff forms are discussed in an elementary manner so that the materials can be easily accessible to beginning graduate students in applied mathematics or computational sciences.

[1]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[2]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[3]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[4]  S. Griffis EDITOR , 1997, Journal of Navigation.

[5]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[6]  Ioannis G. Kevrekidis,et al.  Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .

[7]  R. Scheid The Accurate Numerical Solution of Highly Oscillatory Ordinary Differential Equations , 1983 .

[8]  Germund Dahlquist,et al.  Are the numerical methods and software satisfactory for chemical kinetics , 1982 .

[9]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[10]  B. Engquist,et al.  Computational high frequency wave propagation , 2003, Acta Numerica.

[11]  R. Scheid Difference Methods for Problems With Different Time Scales , 1985 .

[12]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[13]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[14]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[15]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[16]  Björn Engquist,et al.  Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .

[17]  L. Petzold An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations , 1978 .

[18]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[19]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[20]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[21]  Zvi Artstein,et al.  Young Measure Approach to Computing Slowly Advancing Fast Oscillations , 2008, Multiscale Model. Simul..

[22]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[23]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[24]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[25]  Björn Engquist,et al.  Numerical Multiscale Methods for Coupled Oscillators , 2009, Multiscale Model. Simul..

[26]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[27]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[28]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[29]  Heinz-Otto Kreiss,et al.  Problems with different time scales , 1992, Acta Numerica.

[30]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[31]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[32]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[33]  Eric Vanden-Eijnden,et al.  ON HMM-like integrators and projective integration methods for systems with multiple time scales , 2007 .