Formation Flying SAR: Analysis of Imaging Performance by Array Theory

This article analyzes the process of image synthesis for a formation flying synthetic aperture radar (FF-SAR), which is a multistatic synthetic aperture radar (SAR) based on a cluster of receiving-only satellites flying in a close formation, in the framework of the array theory. Indeed, the imaging properties of different close receivers, when analyzed as isolated items, are very similar and form the so-called common array. Moreover, the relative positions among the receivers implicitly define a physical array, referred to as spatial diversity array. FF-SAR imaging can be verified as a result of the spatial diversity array weighting the common array. Hence, different approaches to beamforming can be applied to the spatial diversity array to provide the FF-SAR with distinctive capabilities, such as coherent resolution enhancement and high-resolution wide-swath imaging. Simulation examples are discussed which confirm that array theory is a powerful tool to quickly and easily characterize FF-SAR imaging performance.

[1]  M. D'Errico,et al.  Very-low altitude parasitic radar distributed on small satellites , 2018, Advances in Space Research.

[2]  Laurent Ferro-Famil,et al.  SAR tomography from bistatic single-pass interferometers , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[3]  Gerhard Krieger,et al.  SESAME: A single-pass interferometric SEntinel-1 companion SAR mission for monitoring GEO- and biosphere dynamics , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[4]  Oliver Montenbruck,et al.  Precise GRACE baseline determination using GPS , 2005 .

[5]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[6]  Antonio Moccia,et al.  Spatial Resolution of Bistatic Synthetic Aperture Radar: Impact of Acquisition Geometry on Imaging Performance , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Kurt Kubik,et al.  Three-dimensional bistatic synthetic aperture radar imaging system: spatial resolution analysis , 2005 .

[8]  Bohn Stafleu van Loghum,et al.  Online … , 2002, LOG IN.

[9]  Michael Inggs,et al.  Multistatic radar systems , 2018 .

[10]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[11]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[12]  Nathan A. Goodman,et al.  Resolution and synthetic aperture characterization of sparse radar arrays , 2003 .

[13]  Gerhard Krieger,et al.  Impact of oscillator noise in bistatic and multistatic SAR , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[14]  Tao Zeng,et al.  Generalized approach to resolution analysis in BSAR , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Gerhard Krieger,et al.  Autonomous time and phase calibration of spaceborne bistatic SAR systems , 2014 .

[16]  Claudio Prati,et al.  Improving slant-range resolution with multiple SAR surveys , 1993 .

[17]  Nathan A. Goodman,et al.  SAR AND MTI PROCESSING OF SPARSE SATELLITE CLUSTERS , 2002 .

[18]  Cristian Rossi,et al.  Single-Pass Tomography With Alternating Bistatic TanDEM-X Data , 2015, IEEE Geoscience and Remote Sensing Letters.

[19]  Robert E. Zee,et al.  FLIGHT RESULTS FROM THE CANX-4 AND CANX-5 FORMATION FLYING MISSION , 2016 .

[20]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[21]  Antonio Moccia,et al.  PRF Selection in Formation-Flying SAR: Experimental Verification on Sentinel-1 Monostatic Repeat-Pass Data , 2019, Remote. Sens..

[22]  Gerhard Krieger,et al.  Dual-Platform Large Along-Track Baseline GMTI , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[23]  O. Loffeld,et al.  Challenges of a Bistatic Spaceborne / Airborne SAR Experiment , 2006 .

[24]  Oliver Montenbruck,et al.  Navigation and control of the TanDEM-X formation , 2008 .

[25]  R. C. Heimiller Theory and Evaluation of Gain Patterns of Synthetic Arrays , 1962, IRE Transactions on Military Electronics.

[26]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[27]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Ali Cafer Gürbüz,et al.  A CubeSat Train for Radar Sounding and Imaging of Antarctic Ice Sheet , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Roberto Opromolla,et al.  Design of relative trajectories for in orbit proximity operations , 2018 .

[30]  Marco D'Errico,et al.  Distributed Space Missions for Earth System Monitoring , 2013 .

[31]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[32]  G.P. Cardillo On the use of the gradient to determine bistatic SAR resolution , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[33]  Gerhard Krieger,et al.  Spaceborne Demonstration of Distributed SAR Imaging With TerraSAR-X and TanDEM-X , 2019, IEEE Geoscience and Remote Sensing Letters.

[34]  Marco D'Errico,et al.  Formation geometries for multistatic SAR tomography , 2014 .

[35]  Didier Massonnet,et al.  Capabilities and limitations of the interferometric cartwheel , 2001, IEEE Trans. Geosci. Remote. Sens..

[36]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[37]  Hui Ma,et al.  Passive SAR satellite constellation for near-persistent earth observation: Prospects and issues , 2018, IEEE Aerospace and Electronic Systems Magazine.

[38]  F. Li,et al.  Ambiguities in Spacebornene Synthetic Aperture Radar Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Mariantonietta Zonno,et al.  Innovative MirrorSAR Concept for Multi-Static HRWS , 2019 .

[40]  Gerhard Krieger,et al.  Performance prediction of a phase synchronization link for bistatic SAR , 2006, IEEE Geoscience and Remote Sensing Letters.

[41]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[42]  Amit Kumar Mishra,et al.  Cooperative Multimonostatic SAR: A New SAR Configuration for Improved Resolution , 2010, IEEE Antennas and Wireless Propagation Letters.