Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways

[1]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[2]  S. T. Kitai,et al.  Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata , 1990, Brain Research.

[3]  J. Masdeu,et al.  Astasia and gait failure with damage of the pontomesencephalic locomotor region , 1994, Annals of neurology.

[4]  J. Yeomans Role of Tegmental Cholinergic Neurons in Dopaminergic Activation, Antimuscarinic Psychosis and Schizophrenia , 1995, Neuropsychopharmacology.

[5]  A. Toga,et al.  Fluoro Nissl Green: a novel fluorescent counterstain for neuroanatomy , 1995, Neuroscience Letters.

[6]  B. K. Hartman,et al.  Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  S. T. Kitai,et al.  Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta , 1995, Neuroscience Research.

[8]  C. Blaha,et al.  Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  S. T. Kitai,et al.  Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling , 1996, The Journal of comparative neurology.

[10]  S. T. Kitai,et al.  Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization , 1997, Neuroscience.

[11]  M. Inase,et al.  Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey , 1997, Neuroscience Letters.

[12]  J. Changeux,et al.  Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine , 1998, Nature.

[13]  W. Corrigall,et al.  The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study , 2000, Neuroscience.

[14]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[15]  L P Noldus,et al.  EthoVision: A versatile video tracking system for automation of behavioral experiments , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[16]  W. Corrigall,et al.  Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine , 2002, Psychopharmacology.

[17]  C. Belzung,et al.  The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. , 2003, European journal of pharmacology.

[18]  A. C. Collins,et al.  Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization , 2004, Science.

[19]  R. Miall,et al.  Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey , 2004, Neuroreport.

[20]  E. Scarnati,et al.  A microiontophoretic study on the nature of the putative synaptic neurotransmitter involved in the pedunculopontine-substantia nigra pars compacta excitatory pathway of the rat , 2004, Experimental Brain Research.

[21]  S. Gill,et al.  Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease , 2005, Neuroreport.

[22]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[23]  A. Grace,et al.  The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. C. Collins,et al.  Guidelines on nicotine dose selection for in vivo research , 2007, Psychopharmacology.

[25]  C. Xiao,et al.  Patch-clamp studies in the CNS illustrate a simple new method for obtaining viable neurons in rat brain slices: Glycerol replacement of NaCl protects CNS neurons , 2006, Journal of Neuroscience Methods.

[26]  P. Stanzione,et al.  Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. , 2007, Brain : a journal of neurology.

[27]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[28]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[29]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[30]  D. Bertrand,et al.  Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. , 2007, Annual review of pharmacology and toxicology.

[31]  J. Bolam,et al.  Cholinergic modulation of midbrain dopaminergic systems , 2008, Brain Research Reviews.

[32]  Tristan D. McClure-Begley,et al.  In Vivo Activation of Midbrain Dopamine Neurons via Sensitized, High-Affinity α6∗ Nicotinic Acetylcholine Receptors , 2008, Neuron.

[33]  U. Maskos The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology , 2008, British journal of pharmacology.

[34]  E. Marani,et al.  The subthalamic nucleus. Part I: development, cytology, topography and connections. , 2008, Advances in anatomy, embryology, and cell biology.

[35]  C. Lupica,et al.  Properties of distinct ventral tegmental area synapses activated via pedunculopontine or ventral tegmental area stimulation in vitro , 2009, The Journal of physiology.

[36]  M. Morales,et al.  Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat , 2009, The European journal of neuroscience.

[37]  S. Studenski,et al.  History of falls in Parkinson disease is associated with reduced cholinergic activity , 2009, Neurology.

[38]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[39]  S. Houle,et al.  Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: A [15O] H2O PET study , 2009, Human brain mapping.

[40]  Nicola J. Ray,et al.  Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus , 2009, Movement disorders : official journal of the Movement Disorder Society.

[41]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[42]  Gregory A. Smith,et al.  Retrograde Axon Transport of Herpes Simplex Virus and Pseudorabies Virus: a Live-Cell Comparative Analysis , 2009, Journal of Virology.

[43]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[44]  A. Benabid,et al.  Sleep induced by stimulation in the human pedunculopontine nucleus area , 2010, Annals of neurology.

[45]  S. Lehéricy,et al.  Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. , 2010, The Journal of clinical investigation.

[46]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[47]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[48]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[49]  S. Mizumori,et al.  Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats , 2011, The European journal of neuroscience.

[50]  H. Lester,et al.  Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses , 2011, Neuron.

[51]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[52]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[53]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[54]  Garret D Stuber,et al.  Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits , 2011, Nature Protocols.

[55]  H. Lester,et al.  Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations , 2012, Pharmacological Reviews.

[56]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[57]  Anatol C. Kreitzer,et al.  Striatal mechanisms underlying movement, reinforcement, and punishment. , 2012, Physiology.

[58]  S. Studenski,et al.  Gait speed in Parkinson disease correlates with cholinergic degeneration , 2013, Neurology.

[59]  Yasushi Kobayashi,et al.  Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus , 2013, Front. Integr. Neurosci..

[60]  D. Lodge,et al.  The lateral mesopontine tegmentum regulates both tonic and phasic activity of VTA dopamine neurons. , 2013, Journal of neurophysiology.

[61]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[62]  E. Benarroch Pedunculopontine nucleus , 2013, Neurology.

[63]  Alice M Stamatakis,et al.  Distinct extended amygdala circuits for divergent motivational states , 2013, Nature.

[64]  K. Sullivan,et al.  OpenEpi: Open Source Epidemiologic Statistics for Public Health. Version 2.3.1. , 2013 .

[65]  David J. Anderson,et al.  Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals , 2014, Nature Neuroscience.

[66]  Rajan P Kulkarni,et al.  Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing , 2014, Cell.

[67]  P. Sah,et al.  Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus , 2014, Nature Neuroscience.

[68]  M. Wilson,et al.  Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep , 2014, Proceedings of the National Academy of Sciences.

[69]  B. Roth,et al.  Chemogenetic tools to interrogate brain functions. , 2014, Annual review of neuroscience.

[70]  M. Häusser Optogenetics: the age of light , 2014, Nature Methods.

[71]  Todor V. Gerdjikov,et al.  A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem , 2014, The Journal of Neuroscience.

[72]  C. Hass,et al.  Pedunculopontine Nucleus Stimulation: Where are We Now and What Needs to be Done to Move the Field Forward? , 2014, Front. Neurol..

[73]  R. Mehanna Gait speed in Parkinson disease correlates with cholinergic degeneration , 2014, Neurology.

[74]  E. Nestler,et al.  Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway , 2013, Nature Neuroscience.

[75]  W. Schultz,et al.  Timing in reward and decision processes , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[76]  R. Neve,et al.  Enhancing Depression Mechanisms in Midbrain Dopamine Neurons Achieves Homeostatic Resilience , 2014, Science.

[77]  S. E. Gartside,et al.  This Work Is Licensed under a Creative Commons Attribution 4.0 International License Pharmacogenetic Stimulation of Cholinergic Pedunculopontine Neurons Reverses Motor Deficits in a Rat Model of Parkinson's Disease , 2022 .

[78]  O. Mabrouk,et al.  Ventral tegmental area neurotensin signaling links the lateral hypothalamus to locomotor activity and striatal dopamine efflux in male mice. , 2015, Endocrinology.

[79]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[80]  H. Lester,et al.  Nicotinic Receptor Subtype-Selective Circuit Patterns in the Subthalamic Nucleus , 2015, The Journal of Neuroscience.

[81]  B. Roth,et al.  DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. , 2015, Annual review of pharmacology and toxicology.

[82]  Stephen A. Allsop,et al.  Decoding Neural Circuits that Control Compulsive Sucrose Seeking , 2015, Cell.

[83]  Charless C. Fowlkes,et al.  Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping , 2015, Nature Protocols.

[84]  E. Benarroch,et al.  Heterogeneity of the midbrain dopamine system , 2015, Neurology.

[85]  B. Lau,et al.  The integrative role of the pedunculopontine nucleus in human gait. , 2015, Brain : a journal of neurology.

[86]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[87]  Anatol C. Kreitzer,et al.  Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia , 2016, Cell.

[88]  Accepted , 2018 .