An explicit KO ‐degree map and applications

The goal of this note is to study the analog in unstable A1 ‐homotopy theory of the unit map from the motivic sphere spectrum to the Hermitian K‐theory spectrum, that is, the degree map in Hermitian K‐theory. We show that ‘Suslin matrices’, which are explicit maps from odd‐dimensional split smooth affine quadrics to geometric models of the spaces appearing in Bott periodicity in Hermitian K‐theory, stabilize in a suitable sense to the unit map. As applications, we deduce that KiMW(F)=GWii(F) for i⩽3 , which can be thought of as an extension of Matsumoto's celebrated theorem describing K2 of a field. These results provide the first step in a program aimed at computing the sheaf πnA1(An∖0) for n⩾4 .

[1]  M. Schlichting,et al.  Geometric models for higher Grothendieck–Witt groups in $$\mathbb {A}^1$$A1-homotopy theory , 2015 .

[2]  A. Asok,et al.  The simplicial suspension sequence in 1 –homotopy , 2015, 1507.05152.

[3]  Stephen Scully,et al.  Milnor-Witt $K$-groups of local rings , 2015, 1501.07631.

[4]  Marc Hoyois From algebraic cobordism to motivic cohomology , 2012, 1210.7182.

[5]  J. Fasel,et al.  Algebraic vector bundles on spheres , 2012, 1204.4538.

[6]  K. Ormsby,et al.  Stable motivic pi_1 of low-dimensional fields , 2013, 1310.2970.

[7]  M. Schlichting,et al.  Geometric models for higher Grothendieck-Witt groups in A1-homotopy theory , 2013, 1309.5818.

[8]  J. Fasel,et al.  Secondary Characteristic Classes and the Euler Class , 2013, 1307.6831.

[9]  Colin Clarke Benjamin , 2013, Tempo.

[10]  K. Conrad,et al.  STABLY FREE MODULES , 2013 .

[11]  J. Fasel,et al.  Splitting vector bundles outside the stable range and A^1-homotopy sheaves of punctured affine spaces , 2012, 1209.5631.

[12]  F. Morel A1-Algebraic Topology over a Field , 2012 .

[13]  J. Fasel,et al.  A cohomological classification of vector bundles on smooth affine threefolds , 2012, 1204.0770.

[14]  R. G. Swan,et al.  On Stably Free Modules over Affine Algebras , 2011, 1107.1051.

[15]  J. Fasel A degree map on unimodular rows , 2011, 1103.4780.

[16]  Spiros Adams-Florou An Introduction to Algebraic K-Theory , 2011 .

[17]  I. Panin,et al.  On the motivic commutative ring spectrum BO. , 2010, 1011.0650.

[18]  M. Schlichting Hermitian K -theory of exact categories , 2010 .

[19]  J. Fasel,et al.  Chow-Witt groups and Grothendieck-Witt groups of regular schemes , 2009 .

[20]  B. Calmès,et al.  TENSOR-TRIANGULATED CATEGORIES AND DUALITIES , 2008, 0806.0569.

[21]  M. Schlichting The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes , 2008, 0811.4632.

[22]  B. Calmès,et al.  Push-forwards for Witt groups of schemes , 2008, 0806.0571.

[23]  J. Hornbostel Oriented Chow groups, Hermitian K-theory and the Gersten conjecture , 2008 .

[24]  J. Lannes,et al.  Suites de Sturm, indice de Maslov et périodicité de Bott , 2008 .

[25]  T. Lam Serre's Problem on Projective Modules , 2006 .

[26]  F. Morel The Stable [graphic]$$\mathbb{A}^1$$-Connectivity Theorems , 2006 .

[27]  J. Hornbostel A 1 -representability of hermitian K-theory and Witt groups , 2005 .

[28]  Daniel R. Grayson,et al.  Handbook of K-theory , 2005 .

[29]  Christian Ausoni,et al.  AN INTRODUCTION TO ALGEBRAIC K-THEORY , 2005 .

[30]  F. Morel Sur les puissances de l’idéal fondamental de l’anneau de Witt , 2004 .

[31]  Stefan Gille A transfer morphism for Witt groups , 2003 .

[32]  I. Kríz,et al.  The Steinberg relation in A−1-stable homotopy , 2001 .

[33]  Thomas H. Geisser,et al.  The K-theory of fields in characteristic p , 2000 .

[34]  Vladimir Voevodsky,et al.  A1-homotopy theory of schemes , 1999 .

[35]  Paul Balmer Derived Witt groups of a scheme , 1999 .

[36]  M. Kolster On torsion in K>2 of fields , 1991 .

[37]  A. Suslin Torsion in K2 of fields , 1987 .

[38]  A. Suslin Mennicke symbols and their applications in the k-theory of fields , 1982 .

[39]  P. Karoubi Le theoreme fondamental de la K-theorie hermitienne , 1980 .

[40]  Scott D. Thomson,et al.  An Introduction , 1977 .

[41]  Manfred Knebusch,et al.  Symmetric bilinear forms over algebraic varieties , 1977 .

[42]  L. Vaserstein,et al.  SERRE'S PROBLEM ON PROJECTIVE MODULES OVER POLYNOMIAL RINGS, AND ALGEBRAIC $ K$-THEORY , 1976 .

[43]  A. Suslin,et al.  Serre's Problem on projective modules over polynomial rings and algebraic K-theory , 1974 .

[44]  Max bi Karou Périodicité de la K — Théorie hermitienne , 1973 .

[45]  H. Bass Hermitian K-theory and geometric applications , 1973 .

[46]  L. Vaserstein STABILIZATION OF UNITARY AND ORTHOGONAL GROUPS OVER A RING WITH INVOLUTION , 1970 .

[47]  Hyman Bass,et al.  Algebraic K-theory , 1968 .

[48]  R. Bott,et al.  THE STABLE HOMOTOPY OF THE CLASSICAL GROUPS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.