An explicit KO ‐degree map and applications
暂无分享,去创建一个
[1] M. Schlichting,et al. Geometric models for higher Grothendieck–Witt groups in $$\mathbb {A}^1$$A1-homotopy theory , 2015 .
[2] A. Asok,et al. The simplicial suspension sequence in 1 –homotopy , 2015, 1507.05152.
[3] Stephen Scully,et al. Milnor-Witt $K$-groups of local rings , 2015, 1501.07631.
[4] Marc Hoyois. From algebraic cobordism to motivic cohomology , 2012, 1210.7182.
[5] J. Fasel,et al. Algebraic vector bundles on spheres , 2012, 1204.4538.
[6] K. Ormsby,et al. Stable motivic pi_1 of low-dimensional fields , 2013, 1310.2970.
[7] M. Schlichting,et al. Geometric models for higher Grothendieck-Witt groups in A1-homotopy theory , 2013, 1309.5818.
[8] J. Fasel,et al. Secondary Characteristic Classes and the Euler Class , 2013, 1307.6831.
[9] Colin Clarke. Benjamin , 2013, Tempo.
[10] K. Conrad,et al. STABLY FREE MODULES , 2013 .
[11] J. Fasel,et al. Splitting vector bundles outside the stable range and A^1-homotopy sheaves of punctured affine spaces , 2012, 1209.5631.
[12] F. Morel. A1-Algebraic Topology over a Field , 2012 .
[13] J. Fasel,et al. A cohomological classification of vector bundles on smooth affine threefolds , 2012, 1204.0770.
[14] R. G. Swan,et al. On Stably Free Modules over Affine Algebras , 2011, 1107.1051.
[15] J. Fasel. A degree map on unimodular rows , 2011, 1103.4780.
[16] Spiros Adams-Florou. An Introduction to Algebraic K-Theory , 2011 .
[17] I. Panin,et al. On the motivic commutative ring spectrum BO. , 2010, 1011.0650.
[18] M. Schlichting. Hermitian K -theory of exact categories , 2010 .
[19] J. Fasel,et al. Chow-Witt groups and Grothendieck-Witt groups of regular schemes , 2009 .
[20] B. Calmès,et al. TENSOR-TRIANGULATED CATEGORIES AND DUALITIES , 2008, 0806.0569.
[21] M. Schlichting. The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes , 2008, 0811.4632.
[22] B. Calmès,et al. Push-forwards for Witt groups of schemes , 2008, 0806.0571.
[23] J. Hornbostel. Oriented Chow groups, Hermitian K-theory and the Gersten conjecture , 2008 .
[24] J. Lannes,et al. Suites de Sturm, indice de Maslov et périodicité de Bott , 2008 .
[25] T. Lam. Serre's Problem on Projective Modules , 2006 .
[26] F. Morel. The Stable [graphic]$$\mathbb{A}^1$$-Connectivity Theorems , 2006 .
[27] J. Hornbostel. A 1 -representability of hermitian K-theory and Witt groups , 2005 .
[28] Daniel R. Grayson,et al. Handbook of K-theory , 2005 .
[29] Christian Ausoni,et al. AN INTRODUCTION TO ALGEBRAIC K-THEORY , 2005 .
[30] F. Morel. Sur les puissances de l’idéal fondamental de l’anneau de Witt , 2004 .
[31] Stefan Gille. A transfer morphism for Witt groups , 2003 .
[32] I. Kríz,et al. The Steinberg relation in A−1-stable homotopy , 2001 .
[33] Thomas H. Geisser,et al. The K-theory of fields in characteristic p , 2000 .
[34] Vladimir Voevodsky,et al. A1-homotopy theory of schemes , 1999 .
[35] Paul Balmer. Derived Witt groups of a scheme , 1999 .
[36] M. Kolster. On torsion in K>2 of fields , 1991 .
[37] A. Suslin. Torsion in K2 of fields , 1987 .
[38] A. Suslin. Mennicke symbols and their applications in the k-theory of fields , 1982 .
[39] P. Karoubi. Le theoreme fondamental de la K-theorie hermitienne , 1980 .
[40] Scott D. Thomson,et al. An Introduction , 1977 .
[41] Manfred Knebusch,et al. Symmetric bilinear forms over algebraic varieties , 1977 .
[42] L. Vaserstein,et al. SERRE'S PROBLEM ON PROJECTIVE MODULES OVER POLYNOMIAL RINGS, AND ALGEBRAIC $ K$-THEORY , 1976 .
[43] A. Suslin,et al. Serre's Problem on projective modules over polynomial rings and algebraic K-theory , 1974 .
[44] Max bi Karou. Périodicité de la K — Théorie hermitienne , 1973 .
[45] H. Bass. Hermitian K-theory and geometric applications , 1973 .
[46] L. Vaserstein. STABILIZATION OF UNITARY AND ORTHOGONAL GROUPS OVER A RING WITH INVOLUTION , 1970 .
[47] Hyman Bass,et al. Algebraic K-theory , 1968 .
[48] R. Bott,et al. THE STABLE HOMOTOPY OF THE CLASSICAL GROUPS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.