Computational mechanics of materials and structures

Abstract Mechanics of Materials and Structures has become a popular new name of former Institutes for Strength of Materials and/or Structural Analysis at European Universities of Technology. This designation stands for a scientific program aimed at a symbiosis of material and structural mechanics. The adjective “computational” refers to the algorithmic component of Mechanics of Materials and Structures, which is frequently underrated. It was the advent of the digital computer that opened the door to computational mechanics, which has become a scientific discipline with a tremendous influence on our lives. This survey paper contains a report about a selection of recent research projects carried out at the Institute for Mechanics of Materials and Structures of Vienna University of Technology. Its aim is to demonstrate that the trinity of Computational Mechanics–Materials–Structures has a strong impact on modern life.

[1]  Herbert A. Mang,et al.  Efficient treatment of rubber friction problems in industrial applications , 2006 .

[2]  Roman Lackner,et al.  Scaling relations for viscoelastic – cohesive conical indentation , 2008 .

[3]  David R. Owen,et al.  THREE DIMENSIONAL ELASTO-PLASTIC FINITE ELEMENT ANALYSIS , 1975 .

[4]  Gerhard Schickhofer,et al.  Numerische Berechnung von Holzkonstruktionen unter Verwendung eines orthotropen elasto-plastischen Werkstoffmodells , 2007, Holz als Roh- und Werkstoff.

[5]  C. Hellmich,et al.  Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments. , 2002, Journal of biomechanics.

[6]  Roman Lackner,et al.  Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis , 2008 .

[7]  Christian Schmid,et al.  Numerische Berechnung von Holzkonstruktionen unter Verwendung eines realitätsnahen orthotropen , 2005 .

[8]  N. Laws,et al.  The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material , 1977 .

[9]  Herbert A. Mang,et al.  Remarkable postbuckling paths analyzed by means of the consistently linearized eigenproblem , 2008 .

[10]  Roman Lackner,et al.  Computational Concrete Mechanics , 2004 .

[11]  Roman Lackner,et al.  Microscale characterization of bitumen – back-analysis of viscoelastic properties by means of nanoindentation , 2007 .

[12]  Roman Lackner,et al.  Multiscale Model for Creep of Shotcrete - From Logarithmic-Type Viscous Behavior of CSH at the μm-Scale to Macroscopic Tunnel Analysis , 2008 .

[13]  Christian Hellmich,et al.  Microelasticity of Bone , 2005 .

[14]  Herbert A. Mang,et al.  Conversion from imperfection-sensitive into imperfection-insensitive elastic structures I: Theory , 2006 .

[15]  Roman Lackner,et al.  Identification of Logarithmic‐Type Creep of Calcium‐Silicate‐Hydrates by Means of Nanoindentation , 2009 .

[16]  Roman Lackner,et al.  Finer‐Scale Extraction of Viscoelastic Properties from Nanoindentation Characterised by Viscoelastic–Plastic Response , 2009 .

[17]  Christian Hellmich,et al.  'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. , 2007, Journal of theoretical biology.

[18]  Roman Lackner,et al.  A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials , 2007 .

[19]  Roman Lackner,et al.  Stability assessment of shallow tunnels subjected to fire load , 2005 .

[20]  Andreas Steinboeck,et al.  Are linear prebuckling paths and linear stability problems mutually conditional? , 2008 .

[21]  Bernhard A. Schrefler,et al.  Thermo-hydro-chemical couplings considered in safety assessment of shallow tunnels subjected to fire load , 2008 .

[22]  Jacek Gondzio,et al.  An algorithm for computing the compressive strength of heterogeneous cohesive-frictional materials – Application to cement paste , 2007 .

[23]  Josef Eberhardsteiner,et al.  Experimental Determination of Shear‐Thinning Behaviour During Extrusion of Rubber Blends , 2011 .

[24]  Roman Lackner,et al.  Identification of four material phases in bitumen by atomic force microscopy , 2004 .

[25]  Luc Dormieux,et al.  Micromechanics of saturated and unsaturated porous media , 2002 .

[26]  L. Loeber,et al.  New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy , 1996 .

[27]  Roman Lackner,et al.  Microstructure-based identification of bitumen performance , 2006 .

[28]  Christian Hellmich,et al.  Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? , 2004, Biomechanics and modeling in mechanobiology.

[29]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  W. Liederer,et al.  Experimentelle Bestimmung der adhäsiven Reibeigenschaften von Gummiproben auf ebenen Oberflächen , 1998 .

[31]  Josef Eberhardsteiner,et al.  Experimental investigation and identification of material parameters for rubber blends. , 2006 .

[32]  Herbert A. Mang,et al.  Conversion from imperfection-sensitive into imperfection-insensitive elastic structures. II: Numerical investigation , 2006 .

[33]  Roman Lackner,et al.  Multi-phase hydration model for prediction of hydration-heat release of blended cements , 2008 .

[34]  Roman Lackner,et al.  Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account , 2007 .

[35]  Roman Lackner,et al.  Identification of viscoelastic model parameters by means of cyclic nanoindentation testing , 2008 .

[36]  Herbert A. Mang,et al.  A 3D finite element formulation describing the frictional behavior of rubber on ice and concrete surfaces , 2001 .

[37]  Josef Eberhardsteiner,et al.  Rheological characterization of the die swell phenomenon of rubber compounds , 2007 .

[38]  Christian Pichler,et al.  Thermochemomechanical assessment of ground improvement by jet grouting in tunneling , 2003 .

[39]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[40]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  Herbert A. Mang,et al.  Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood , 2005 .

[42]  Franz-Josef Ulm,et al.  A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials , 2003 .

[43]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .

[44]  Roman Lackner,et al.  Identification of residual gas-transport properties of concrete subjected to high temperatures , 2008 .

[45]  Christian Hellmich,et al.  Development and experimental validation of a continuum micromechanics model for the elasticity of wood , 2005 .

[46]  Herbert A. Mang,et al.  Conditions for symmetric, antisymmetric, and zero-stiffness bifurcation in view of imperfection sensitivity and insensitivity , 2008 .

[47]  C. Martin,et al.  Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming , 2006 .

[48]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[49]  B. Schrefler Multiphase flow in deforming porous material , 2004 .

[50]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[51]  Herbert A. Mang,et al.  Sliding behaviour of simplified tire tread patterns investigated by means of FEM , 2006 .

[52]  Christian Hellmich,et al.  Assessment of Protection Systems for Buried Steel Pipelines Endangered by Rockfall , 2005 .

[53]  E. Menzel,et al.  On the orthogonal anisotropy of human skin as a function of anatomical region. , 1996, Connective tissue research.

[54]  Roman Lackner,et al.  Multiscale Modeling as the Basis for Reliable Predictions of the Behaviour of Multi-Composed Materials , 2004 .

[55]  Christian Hellmich,et al.  Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach , 2007 .

[56]  Alan Muhr,et al.  Constitutive Models for Rubber , 1999 .

[57]  H. Jennings,et al.  A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .

[58]  Bernhard Pichler,et al.  Impact of rocks onto gravel Design and evaluation of experiments , 2005 .

[59]  Christian Hellmich,et al.  Mineral–collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach , 2004 .

[60]  C. Hellmich,et al.  Loading of a Gravel-Buried Steel Pipe Subjected to Rockfall , 2006 .

[61]  Roman Lackner,et al.  Autogenous Shrinkage and Creep of Early-Age Cement-Based Materials: Multiscale Modeling With Experimental Identification and Verification , 2007 .

[62]  Roman Lackner,et al.  How do polypropylene fibers improve the spalling behavior of in-situ concrete? , 2006 .

[63]  Bernhard Pichler Parameter Identification as the Basis for Prognoses in GeotechnicalEngineering , 2008 .

[64]  G. C. Wood,et al.  The role of non-collagen components in the mechanical behaviour of tendon fibres. , 1963, Biochimica et biophysica acta.