Lightcurve, Color and Phase Function Photometry of the OSIRIS-REx Target Asteroid (101955) Bennu

Abstract The NASA OSIRIS-REx mission will retrieve a sample of the carbonaceous near-Earth Asteroid (101955) Bennu and return it to Earth in 2023. Photometry in the Eight Color Asteroid Survey (ECAS) filter system and Johnson–Cousins V and R filters were conducted during the two most recent apparitions in 2005/2006 and 2011/2012. Lightcurve observations over the nights of September 14–17, 2005 yielded a synodic rotation period of 4.2905 ± 0.0065 h, which is consistent with the results of Nolan et al. (2013). ECAS color measurements made during the same nights confirm the B-type classification of Clark et al. (Clark, B.E., Binzel, R.P., Howell, E.S., Cloutis, E.A., Ockert-Bell, M., Christensen, P., Barucci, M.A., DeMeo, F., Lauretta, D.S., Connolly, H., Soderberg, A., Hergenrother, C., Lim, L., Emery, J., Mueller, M. [2011]. Icarus 216, 462–475). A search for the 0.7 μm hydration feature using the method of Vilas (Vilas, F. [1994]. Icarus 111, 456–467) did not reveal its presence. Photometry was obtained over a range of phase angles from 15° to 96° between 2005 and 2012. The resulting phase function slope of 0.040 magnitudes per degree is consistent with the phase slopes of other low albedo near-Earth asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94–105).

[1]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[2]  Michael Mommert,et al.  ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS , 2011 .

[3]  Clark R. Chapman,et al.  NEAR Encounter with Asteroid 253 Mathilde: Overview , 1999 .

[4]  D. Scheeres,et al.  Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems , 2011, 1404.0801.

[5]  P. Michel,et al.  Rotational breakup as the origin of small binary asteroids , 2008, Nature.

[6]  Paolo Tanga,et al.  Thermal inertia of main belt asteroids smaller than 100 km from IRAS data , 2008, 0808.0869.

[7]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[8]  J. Bauer,et al.  Spitzer observations of the asteroid-comet transition object and potential spacecraft target 107P (4015) Wilson-Harrington , 2009, 0910.0116.

[9]  Steve B. Howell,et al.  TWO-DIMENSIONAL APERTURE PHOTOMETRY: SIGNAL-TO-NOISE RATIO OF POINT-SOURCE OBSERVATIONS AND OPTIMAL DATA-EXTRACTION TECHNIQUES , 1989 .

[10]  D. Trilling,et al.  EXPLORENEOs. I. DESCRIPTION AND FIRST RESULTS FROM THE WARM SPITZER NEAR-EARTH OBJECT SURVEY , 2010 .

[11]  G. Neukum,et al.  The Near-Earth Objects Follow-up Program. IV. CCD Photometry in 1996-1999 , 2002 .

[12]  A. Rivkin The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data , 2012 .

[13]  E. Howell Probing asteroid composition using visible and near-infrared spectroscopy. , 1995 .

[14]  I. Belskaya,et al.  Opposition Effect of Asteroids , 2000 .

[15]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[16]  David E. Trilling,et al.  Online multi-parameter phase-curve fitting and application to a large corpus of asteroid photometric data , 2011 .

[17]  A. Harris,et al.  Thermal Infrared Spectrophotometry of the Near-Earth Asteroids 2100 Ra-Shalom and 1991 EE , 1998 .

[18]  D. Tholen,et al.  The eight-color asteroid survey - Standard stars , 1982 .

[19]  A survey of small fast rotating asteroids among the near-Earth asteroid population , 2011 .

[20]  Giovanni B. Valsecchi,et al.  Dynamical and compositional assessment of near‐Earth object mission targets , 2004 .

[21]  D. Matson,et al.  Radiometry of near-earth asteroids. , 1989, The Astronomical journal.

[22]  Faith Vilas,et al.  A Cheaper, Faster, Better Way to Detect Water of Hydration on Solar System Bodies , 1994 .

[23]  Michael F. A'Hearn,et al.  Photometric analysis of the nucleus of Comet 81P/Wild 2 from Stardust images , 2009 .

[24]  S. Ostro,et al.  Dynamical Configuration of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[25]  M. Nolan,et al.  Asteroid (101955) 1999 RQ36: Optimum Target for an Asteroid Sample Return Mission , 2010 .

[26]  Giovanni B. Valsecchi,et al.  Long term impact risk for (101955) 1999 RQ36 , 2009, 0901.3631.

[27]  Near-IR Spectroscopy and Possible Meteorite Analogs for Asteroid (253) Mathilde , 2007 .

[28]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[29]  D. Campbell,et al.  Radar observations of asteroid 1999 JM8 , 2001 .

[30]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[31]  J. Licandro,et al.  Spitzer observations of spacecraft target 162173 (1999 JU3) , 2009, 0908.0796.

[32]  Daniel J. Scheeres,et al.  Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[33]  A. Harris,et al.  Lightcurves and phase relations of the asteroids 82 alkmene and 444 Gyptis , 1984 .

[34]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[35]  Daniel J. Scheeres,et al.  Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations , 2013 .

[36]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[37]  K. Tsiganis,et al.  THE ORIGIN OF ASTEROID 101955 (1999 RQ36) , 2010 .

[38]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[39]  I. Belskaya,et al.  Opposition effect of dark asteroids: diversity and albedo dependence , 2010 .

[40]  Marcello Fulchignoni,et al.  An analysis of the amplitude-phase relationship among asteroids , 1990 .

[41]  Clark R. Chapman,et al.  NEAR Photometry of Asteroid 253 Mathilde , 1999 .

[42]  A. Harris,et al.  On the maximum amplitude of harmonics of an asteroid lightcurve , 2012 .

[43]  F. Velichko,et al.  Asteroid observations at low phase angles: III. Brightness behavior of dark asteroids , 2008 .

[44]  Richard P. Binzel,et al.  Constraining near-Earth object albedos using near-infrared spectroscopy , 2005 .

[45]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[46]  M. A’Hearn,et al.  Photometric analysis of Eros from NEAR data , 2004 .

[47]  N. Mcbride,et al.  Optical and thermal infrared observations of six near-Earth asteroids in 2002 , 2005 .

[48]  A. Harris,et al.  Physical characterization of the potentially hazardous high-albedo Asteroid (33342) 1998 WT24 from thermal-infrared observations , 2007 .

[49]  Thermophysical Characterization of Potential Spacecraft Target (101955) 1999 RQ36 , 2010 .

[50]  Alan W. Iarris Tumbling Asteroids , 1997 .

[51]  P. Michel,et al.  Spin-up of rubble-pile asteroids: Disruption, satellite formation, and equilibrium shapes , 2012 .

[52]  Richard P. Binzel,et al.  Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4μm and meteorite analogs , 2011 .

[53]  A. Harris,et al.  The cool surfaces of binary near-Earth asteroids , 2011 .

[54]  B. Altieri,et al.  Physical properties of OSIRIS-REx target asteroid (101955) 1999 RQ36 - Derived from Herschel, VLT/ VISIR, and Spitzer observations , 2012, 1210.5370.

[55]  M. Lesser,et al.  Observations and asteroseismic analysis of the rapidly pulsating hot B subdwarf PG 0911+456 ! , 2007, 0710.5023.

[56]  The Trajectory Dynamics of Near-Earth Asteroid 101955 (1999 RQ36) , 2012 .

[57]  A. Harris,et al.  The surface properties of small asteroids: Peculiar Betulia—A case study , 2005 .