THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS

We use the combined data from the COS-GASS and COS-Halos surveys to characterize the Circum-Galactic Medium (CGM) surrounding typical low-redshift galaxies in the mass range , and over a range of impact parameters extending to just beyond the halo virial radius (Rvir). We find the radial scale length of the distributions of the equivalent widths of the Lyα and Si iii absorbers to be ∼1 and ∼0.4 Rvir, respectively. The radial distribution of equivalent widths is relatively uniform for the blue galaxies, but highly patchy (i.e., it has a low covering fraction) for the red galaxies. We also find that the Lyα and Si iii equivalent widths show significant positive correlations with the specific star formation rate (sSFR) of the galaxy. We find a surprising lack of correlations between the halo mass (virial velocity) and either the velocity dispersions or velocity offsets of the Lyα lines. The ratio of the velocity offset to the velocity dispersion for the Lyα absorbers has a mean value of ∼4, suggesting that a given line of sight is intersecting a dynamically coherent structure in the CGM, rather than a sea of orbiting clouds. The kinematic properties of the CGM are similar in the blue and red galaxies, although we find that a significantly larger fraction of the blue galaxies have large Lyα velocity offsets (>200 km s−1). We show that—if the CGM clouds represent future fuel for star formation—our new results could imply a large drop in the sSFR across the galaxy mass-range we probe.

[1]  R. Davé,et al.  Galaxies in a simulated Lambda CDM Universe-I . Cold mode and hot cores , 2018 .

[2]  G. Kauffmann,et al.  The morphology and kinematics of neutral hydrogen in the vicinity of z = 0 galaxies with Milky Way masses - a study with the Illustris simulation , 2016, 1608.03653.

[3]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[4]  T. Heckman,et al.  THE IMPLICATIONS OF EXTREME OUTFLOWS FROM EXTREME STARBURSTS , 2016, 1603.03036.

[5]  S. More,et al.  Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing , 2015, 1509.06762.

[6]  A. Kravtsov,et al.  Column density profiles of multiphase gaseous haloes , 2015, 1507.07002.

[7]  T. Tepper-García,et al.  An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies , 2015, 1507.06317.

[8]  V. Springel,et al.  Zooming in on accretion – I. The structure of halo gas , 2015, 1503.02665.

[9]  R. Davé,et al.  Baryon cycling in the low-redshift circumgalactic medium: a comparison of simulations to the COS-Halos survey , 2015, 1503.02084.

[10]  Sean D. Johnson,et al.  Characterizing the Chemically-Enriched Circumgalactic Medium of ~38000 Luminous Red Galaxies in SDSS DR12 , 2015, 1510.01336.

[11]  C. Leitherer,et al.  THE SYSTEMATIC PROPERTIES OF THE WARM PHASE OF STARBURST-DRIVEN GALACTIC WINDS , 2015, 1507.05622.

[12]  V. Debattista,et al.  The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo , 2015, 1506.00652.

[13]  M. Murphy,et al.  MAGiiCAT V. ORIENTATION OF OUTFLOWS AND ACCRETION DETERMINE THE KINEMATICS AND COLUMN DENSITIES OF THE CIRCUMGALACTIC MEDIUM , 2015, 1505.07167.

[14]  R. Davé,et al.  CONNECTION BETWEEN THE CIRCUMGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM OF GALAXIES: RESULTS FROM THE COS-GASS SURVEY , 2015, 1504.01392.

[15]  C. McBride,et al.  Galaxy morphology and star formation in the Illustris Simulation at z = 0 , 2015, 1502.07747.

[16]  J. Suresh,et al.  The impact of galactic feedback on the circumgalactic medium , 2015, 1501.02267.

[17]  F. Fraternali,et al.  Galactic hail: the origin of the high-velocity cloud complex C , 2014, 1411.4050.

[18]  K. Finlator,et al.  Equilibrium model constraints on baryon cycling across cosmic time , 2014, 1411.1157.

[19]  Lars Hernquist,et al.  The impact of feedback on cosmological gas accretion , 2014, 1410.5425.

[20]  D. Spergel,et al.  THE STACKED THERMAL SUNYAEV–ZEL’DOVICH SIGNAL OF LOCALLY BRIGHTEST GALAXIES IN PLANCK FULL MISSION DATA: EVIDENCE FOR GALAXY FEEDBACK? , 2014, 1409.6747.

[21]  M. Donahue,et al.  Regulation of star formation in giant galaxies by precipitation, feedback and conduction , 2014, Nature.

[22]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[23]  Timothy M. Heckman,et al.  A local clue to the reionization of the universe , 2014, Science.

[24]  D. Weinberg,et al.  THE COS-DWARFS SURVEY: THE CARBON RESERVOIR AROUND SUB-L* GALAXIES , 2014, 1406.0509.

[25]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[26]  N. Lehner,et al.  EVIDENCE FOR A MASSIVE, EXTENDED CIRCUMGALACTIC MEDIUM AROUND THE ANDROMEDA GALAXY , 2014, 1404.6540.

[27]  D. Weinberg,et al.  THE COS-HALOS SURVEY: PHYSICAL CONDITIONS AND BARYONIC MASS IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2014, 1403.0947.

[28]  Hsiao-Wen Chen,et al.  Mining circumgalactic baryons in the low-redshift universe , 2014, 1402.3602.

[29]  D. Bizyaev,et al.  The large-scale distribution of cool gas around luminous red galaxies , 2013, 1309.7660.

[30]  Juna A. Kollmeier,et al.  Tracing inflows and outflows with absorption lines in circumgalactic gas , 2013, 1309.5951.

[31]  P. Madau,et al.  THE BARYON CYCLE OF DWARF GALAXIES: DARK, BURSTY, GAS-RICH POLLUTERS , 2013, 1308.4131.

[32]  B. Gibson,et al.  MaGICC baryon cycle: the enrichment history of simulated disc galaxies , 2013, 1306.5766.

[33]  R. Davé,et al.  THE HIGH-ION CONTENT AND KINEMATICS OF LOW-REDSHIFT LYMAN LIMIT SYSTEMS , 2013, 1310.6267.

[34]  D. Weinberg,et al.  A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.

[35]  J. Xavier Prochaska,et al.  THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN , 2013, 1309.6317.

[36]  D. Schiminovich,et al.  The GALEX Arecibo SDSS Survey - VIII. Final data release. The effect of group environment on the gas content of massive galaxies , 2013, 1308.1676.

[37]  Geneva,et al.  Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3 , 2013, Science.

[38]  J. Bregman,et al.  THE STRUCTURE OF THE MILKY WAY'S HOT GAS HALO , 2013, 1305.2430.

[39]  V. Wild,et al.  THE IMPACT OF STARBURSTS ON THE CIRCUMGALACTIC MEDIUM , 2013, 1303.1183.

[40]  J. Prochaska,et al.  THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ≲ 1 , 2013, 1302.5424.

[41]  J. Masiero,et al.  The Milky Way halo as a QSO absorption-line system New results from an HST/STIS absorption-line catalogue of Galactic high-velocity clouds , 2013, 1301.1345.

[42]  B. Savage,et al.  Characterizing the Circumgalactic Medium of Nearby Galaxies with HST/COS and HST/STIS Absorption-line Spectroscopy. II. Methods and Models , 2012, 1212.5658.

[43]  J. Prochaska,et al.  THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2012, 1212.0558.

[44]  D. Weinberg,et al.  Hydrogen and Metal Line Absorption Around Low-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2012, 1206.1859.

[45]  J. Prochaska,et al.  QSO ABSORPTION SYSTEMS DETECTED IN Ne viii: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION , 2012, 1201.0939.

[46]  C. A. Oxborrow,et al.  Planck intermediate results - XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies , 2012, 1212.4131.

[47]  Hsiao-Wen Chen The unchanging circumgalactic medium over the past 11 billion years , 2012, 1209.1094.

[48]  D. Schiminovich,et al.  The GALEX Arecibo SDSS Survey - VI. Second data release and updated gas fraction scaling relations , 2012, 1206.3059.

[49]  Mary E. Putman,et al.  GAS ACCRETION IS DOMINATED BY WARM IONIZED GAS IN MILKY WAY MASS GALAXIES AT z ∼ 0 , 2012, 1205.3825.

[50]  Simon L. Morris,et al.  Large-scale structure in absorption: gas within and around galaxy voids , 2012, 1205.2697.

[51]  J. Prochaska,et al.  THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z ∼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS , 2012, 1205.0270.

[52]  J. Meiring,et al.  High-velocity clouds as streams of ionized and neutral gas in the halo of the Milky Way , 2012, 1203.2626.

[53]  M. Putman,et al.  THE ORIGIN AND DISTRIBUTION OF COLD GAS IN THE HALO OF A MILKY-WAY-MASS GALAXY , 2012, 1203.0306.

[54]  P. Richter COLD GAS ACCRETION BY HIGH-VELOCITY CLOUDS AND THEIR CONNECTION TO QSO ABSORPTION-LINE SYSTEMS , 2011, 1111.1717.

[55]  G. Bryan,et al.  GAS CONDENSATION IN THE GALACTIC HALO , 2011, 1105.4639.

[56]  Jing Wang,et al.  THE GALEX ARECIBO SDSS SURVEY. V. THE RELATION BETWEEN THE H i CONTENT OF GALAXIES AND METAL ENRICHMENT AT THEIR OUTSKIRTS , 2011, 1112.1084.

[57]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[58]  J. Prochaska,et al.  The Hidden Mass and Large Spatial Extent of a Post-Starburst Galaxy Outflow , 2011, Science.

[59]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[60]  K. Kwak,et al.  SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS , 2011, 1106.6326.

[61]  Carnegie Observatories,et al.  PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O vi ABSORPTION AT z < 0.2 , 2011, 1103.1891.

[62]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[63]  David Schiminovich,et al.  EXTREME FEEDBACK AND THE EPOCH OF REIONIZATION: CLUES IN THE LOCAL UNIVERSE , 2011, 1101.4219.

[64]  K. Kwak,et al.  NUMERICAL STUDY OF TURBULENT MIXING LAYERS WITH NON-EQUILIBRIUM IONIZATION CALCULATIONS , 2010, 1006.3811.

[65]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[66]  J. Shull,et al.  HUBBLE SPACE TELESCOPE SURVEY OF INTERSTELLAR HIGH-VELOCITY Si iii , 2009, 0909.4900.

[67]  Hsiao-Wen Chen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 PROBING THE IGM-GALAXY CONNECTION AT Z < 0.5 I: A GALAXY SURVEY IN QSO FIELDS AND A GALAXY-ABSORBER CROSS-CORRELATION STUDY 1,2 , 2022 .

[68]  L. Hernquist,et al.  SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS , 2009, 0905.2186.

[69]  C. Danforth,et al.  A LARGE RESERVOIR OF IONIZED GAS IN THE GALACTIC HALO: IONIZED SILICON IN HIGH-VELOCITY AND INTERMEDIATE-VELOCITY CLOUDS , 2009, 0904.4901.

[70]  B. Savage,et al.  THE RELATIONSHIP BETWEEN INTERGALACTIC H i/O vi AND NEARBY (z < 0.017) GALAXIES , 2009, 0903.2259.

[71]  New Jersey Institute of Technology,et al.  Redistributing hot gas around galaxies: do cool clouds signal a solution to the overcooling problem? , 2008, 0812.2025.

[72]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[73]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[74]  Jongsoo Kim,et al.  REMOTE NUMERICAL SIMULATIONS OF THE INTERACTION OF HIGH VELOCITY CLOUDS WITH RANDOM MAGNETIC FIELDS , 2007 .

[75]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[76]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[77]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[78]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[79]  R. Davé,et al.  The association between gas and galaxies – II. The two-point correlation function , 2006, astro-ph/0611807.

[80]  J. Sommer-Larsen Where Are the “Missing” Galactic Baryons? , 2006, astro-ph/0602595.

[81]  E. Ryan-Weber Cross-correlation of Lyman α absorbers with gas-rich galaxies , 2006, astro-ph/0601055.

[82]  M. Fukugita,et al.  Massive Coronae of Galaxies , 2005, astro-ph/0508040.

[83]  G. Williger,et al.  Probing the Intergalactic Medium-Galaxy Connection toward PKS 0405–123. II. A Cross-Correlation Study of Lyα Absorbers and Galaxies at z < 0.5 , 2005, astro-ph/0507621.

[84]  J. Stadel,et al.  Cooling flows within galactic haloes: the kinematics and properties of infalling multiphase gas , 2005, astro-ph/0507296.

[85]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[86]  Y. Jing,et al.  A halo-based galaxy group finder: calibration and application to the 2dFGRS , 2004, astro-ph/0405234.

[87]  J. Bullock,et al.  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[88]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[89]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[90]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[91]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[92]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[93]  J. Blades,et al.  Lyα Absorption around Nearby Galaxies , 2002, astro-ph/0208003.

[94]  Hsiao-Wen Chen,et al.  The Origin of C IV Absorption Systems at Redshifts z < 1: Discovery of Extended C IV Envelopes around Galaxies , 2001, astro-ph/0104403.

[95]  Martin T. Wells,et al.  Estimation of Kendall's tau under censoring , 2000 .

[96]  B. Savage,et al.  The Relationship between Galaxies and Low-Redshift Weak Lyα Absorbers in the Directions of H1821+643 and PG 1116+215 , 1998, astro-ph/9806036.

[97]  A. Fernández-Soto,et al.  The Gaseous Extent of Galaxies and the Origin of Lyα Absorption Systems. IV. Lyα Absorbers Arising in a Galaxy Group , 1999, astro-ph/9904232.

[98]  K. Lanzetta,et al.  The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: A survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs , 1995 .

[99]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[100]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. I - Univariate distributions , 1985 .

[101]  J. Mould,et al.  A color-magnitude relation for spiral galaxies , 1982 .

[102]  I. James,et al.  Linear regression with censored data , 1979 .