Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs.

Strains of Deinococcus geothermalis sp. nov. were isolated from the hot spring and runoff at Agnano, Naples, Italy, and from the hot spring at São Pedro do Sul in central Portugal, while strains of Deinococcus murrayi sp. nov. were isolated from the hot springs at São Pedro do Sul, São Gemil, and Alcafache in central Portugal. The strains of D. geothermalis and D. murrayi produce orange-pigmented colonies and have an optimum growth temperature of about 45 to 50 degrees C. The type strains of the two new species are extremely gamma radiation resistant. The fatty acids of these new species are primarily branched-chain fatty acids. The two new species can be distinguished from each other by the lower pH range of D. geothermalis than of D. murrayi, by their fatty acid compositions, and by several biochemical parameters, including the ability of D. geothermalis to grow in minimal medium without yeast extract. 16S rRNA gene sequencing also showed that the isolates constitute two species and that these species are distinct from the other species of the genus Deinococcus. The type strain of D. geothermalis is AG-3a (= DSM 11300), and the type strain of D. murrayi is ALT-1b (= DSM 11303).

[1]  D. Cullum-Dugan,et al.  Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation , 1956 .

[2]  N. S. Davis,et al.  RADIATION-RESISTANT, PIGMENTED COCCUS ISOLATED FROM HADDOCK TISSUE , 1963, Journal of bacteriology.

[3]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[4]  B. Moseley The isolation and some properties of radiation-sensitive mutants of Micrococcus radiodurans. , 1967, Journal of general microbiology.

[5]  B. Moseley,et al.  Repair of Irradiated Transforming Deoxyribonucleic Acid in Wild Type and a Radiation-Sensitive Mutant of Micrococcus radiodurans , 1971, Journal of bacteriology.

[6]  N. Lewis Radio-resistant Micrococcus radiophilus sp. nov. isolated from irradiated Bombay duck (Harpodon nehereus) , 1973 .

[7]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[8]  M. T. Silva,et al.  Ultrastructure of the Cell Wall and Cytoplasmic Membrane of Gram-Negative Bacteria with Different Fixation Techniques , 1973, Journal of bacteriology.

[9]  K. Yano,et al.  Isolation of Highly Radioresistant Bacterium, Arthrobacter radiotolerans nov. sp. , 1973 .

[10]  P. Cashion,et al.  A rapid method for the base ratio determination of bacterial DNA. , 1977, Analytical biochemistry.

[11]  Hitoshi Ito Isolation of Micrococcus radiodurans occurring in radurized sawdust culture media of mushroom. , 1977 .

[12]  H. Iizuka,et al.  Isolation and Identification of Radiation-resistant Cocci Belonging to the Genus Deinococcus from Sewage Sludges and Animal Feeds , 1983 .

[13]  I. Bousfield,et al.  Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. , 1983 .

[14]  E. Geldreich,et al.  A new medium for the enumeration and subculture of bacteria from potable water , 1985, Applied and environmental microbiology.

[15]  O. Kandler,et al.  Chemotaxonomic and Molecular-Genetic Studies of the Genus Thermus: Evidence for a Phylogenetic Relationship of Thermus aquaticus and Thermus ruber to the Genus Deinococcus , 1986 .

[16]  J. Rostron,et al.  Lipid and Cell Wall Amino Acid Composition in the Classification of Members of the Genus Deinococcus , 1987 .

[17]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[18]  Wolfgang Ludwig,et al.  A Radiation-Resistant Rod-Shaped Bacterium, Deinobacter grandis gen. nov., sp. nov., with Peptidoglycan Containing Ornithine , 1987 .

[19]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[20]  M. T. Silva,et al.  Improved Thiéry staining for the ultrastructural detection of polysaccharides. , 1987, Journal of submicroscopic cytology.

[21]  Hiroshi Iizuka,et al.  Acinetobacter radioresistens sp. nov. isolated from cotton and soil , 1988 .

[22]  M. Costa,et al.  Effect of Growth Temperature on the Lipid Composition of two Strains of Thermus sp. , 1988 .

[23]  M. Collins,et al.  Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: Description of Rubrobacter radiotolerans gen. nov., comb. nov , 1988 .

[24]  T. Devine,et al.  Fatty Acids, Antibiotic Resistance, and Deoxyribonucleic Acid Homology Groups of Bradyrhizobium japonicum , 1988 .

[25]  W. Whitman,et al.  Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography , 1989 .

[26]  C. Woese,et al.  The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. , 1989, Systematic and Applied Microbiology.

[27]  Manuel A. S. Santos,et al.  Numerical Taxonomy of Thermus Isolates from Hot Springs in Portugal , 1989 .

[28]  M. Donato,et al.  Polar Lipid and Fatty Acid Composition of Strains of the Genus Thermus , 1990 .

[29]  C. Manaia,et al.  Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores , 1991 .

[30]  K. Minton,et al.  DNA polymorphisms in new isolates of 'Deinococcus radiopugnans'. , 1991, Journal of general microbiology.

[31]  Erko Stackebrandt,et al.  16S-rDNA analysis of Spirochaeta thermophila: Its phylogenetic position and implications for the systematics of the order Spirochaetales , 1992 .

[32]  M. D. da Costa,et al.  The Genus Thermus and Related Microorganisms , 1992 .

[33]  The phylogenetic position of Dictyoglomus thermophilum based on 16S rRNA sequence analysis , 1993 .

[34]  Ross A. Overbeek,et al.  The ribosomal database project , 1992, Nucleic Acids Res..

[35]  R. H. Thomas,et al.  Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus , 1993 .

[36]  E. Stackebrandt,et al.  Transfer of the Type Species of the Genus Thermobacteroides to the Genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus(Ben-Bassat and Zeikus 1981) comb. nov., Description of Coprothermobacter gen. nov., and Reclassification of Thermobacteroides proteolyticus as Coprothermobacter proteolyti , 1993 .

[37]  E. Stackebrandt,et al.  Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification , 1993, Journal of bacteriology.

[38]  E. Stackebrandt,et al.  The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. , 1994, FEMS microbiology letters.

[39]  K. Minton DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans , 1994, Molecular microbiology.

[40]  M. D. da Costa,et al.  Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to thermus ruber but with lower growth temperatures. , 1995, International journal of systematic bacteriology.

[41]  M. Costa,et al.  Rubrobacter xylanophilus sp. nov., a New Thermophilic Species Isolated from a Thermally Polluted Effluent , 1996 .

[42]  V. Mattimore,et al.  Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation , 1996, Journal of bacteriology.

[43]  E. Stackebrandt,et al.  The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. , 1996, International journal of systematic bacteriology.

[44]  E. Stackebrandt,et al.  Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. , 1997, International journal of systematic bacteriology.