Binary group III-nitride based heterostructures: band offsets and transport properties

In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

[1]  A. T. Kalghatgi,et al.  Growth of InN layers on Si (111) using ultra thin silicon nitride buffer layer by NPA-MBE , 2011 .

[2]  F. Ren,et al.  Band offsets in the Sc2O3∕GaN heterojunction system , 2006 .

[3]  Oliver Ambacher,et al.  Growth of cubic InN on r-plane sapphire , 2003 .

[4]  S. B. Krupanidhi,et al.  Structural and optical properties of nonpolar (11-20) a-plane GaN grown on (1-102) r-plane sapphire substrate by plasma-assisted molecular beam epitaxy , 2011 .

[5]  Akihiko Yoshikawa,et al.  Proposal and achievement of novel structure InN∕GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix , 2007 .

[6]  D. Bour,et al.  Nitride-based semiconductors for blue and green light-emitting devices , 1997, Nature.

[7]  J. Waldrop,et al.  Measurement of AlN/GaN (0001) heterojunction band offsets by x‐ray photoemission spectroscopy , 1996 .

[8]  J. Grandal,et al.  Epitaxial growth and characterization of InN nanorods and compact layers on silicon substrates , 2006 .

[9]  Michael Heuken,et al.  Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness , 2000 .

[10]  K. Hiramatsu,et al.  The barrier height and interface effect of Au-n-GaN Schottky diode , 1995 .

[11]  Armin Dadgar,et al.  Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking , 2002 .

[12]  A. T. Kalghatgi,et al.  Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE , 2010 .

[13]  Michael S. Shur,et al.  AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates , 2000 .

[14]  P. H. Jefferson,et al.  Valence band offset of InN∕AlN heterojunctions measured by x-ray photoelectron spectroscopy , 2007 .

[15]  A. Yoshikawa,et al.  InN/GaN SQW and DH structures grown by radio frequency plasma-assisted MBE , 2005 .

[16]  K. Horn Semiconductor interface studies using core and valence level photoemission , 1990 .

[17]  S. B. Krupanidhi,et al.  Growth temperature induced effects in non-polar a-plane GaN on r-plane sapphire substrate by RF-MBE , 2011 .

[18]  M. Androulidaki,et al.  Epitaxial growth, electrical and optical properties of a-plane InN on r-plane sapphire , 2010 .

[19]  H. Okumura,et al.  GAN HETEROEPITAXIAL GROWTH ON SILICON NITRIDE BUFFER LAYERS FORMED ON SI (111) SURFACES BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY , 1998 .

[20]  S. Kim,et al.  The growth and characterization of an InN layer on AlN/Si (1 1 1) , 2009 .

[21]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[22]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[23]  S. Karadeniz,et al.  Temperature-dependent barrier characteristics of Ag/p-SnS Schottky barrier diodes , 2004 .

[24]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[25]  Shuji Nakamura,et al.  GaN Growth Using GaN Buffer Layer , 1991 .

[26]  H. Morkoç,et al.  Temperature variation of current–voltage characteristics of Au/Ni/n-GaN Schottky diodes , 2009 .

[27]  S. Gwo,et al.  Valence band offset and interface stoichiometry at epitaxial Si3N4/Si(111) heterojunctions formed by plasma nitridation , 2009 .

[28]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[29]  M. Khan,et al.  Characterisation of Pd Schottky barrier on n-type GaN , 1996 .

[30]  Y.-F. Wu,et al.  Measured microwave power performance of AlGaN/GaN MODFET , 1996, IEEE Electron Device Letters.

[31]  W. Schaff,et al.  Comparison of structural perfection of InN layers and InN nanorods grown on the c- and r-planes of Al2O3 , 2007 .

[32]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[33]  T. Sands,et al.  GaN nanorod Schottky and p-n junction diodes. , 2006, Nano letters.

[34]  T. Chu,et al.  Gallium Nitride Films , 1971 .

[35]  Tung,et al.  Electron transport at metal-semiconductor interfaces: General theory. , 1992, Physical review. B, Condensed matter.

[36]  A. Turut,et al.  Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes , 2009 .

[37]  Manijeh Razeghi,et al.  High quality AIN and GaN epilayers grown on (00⋅1) sapphire, (100), and (111) silicon substrates , 1995 .

[38]  M. Yoshimoto,et al.  Fabrication of InN/Si heterojunctions with rectifying characteristics , 2003 .

[39]  G. M. Wu,et al.  Schottky behavior at InN–GaN interface , 2005 .

[40]  A. Reklaitis Terahertz-frequency InN/GaN heterostructure-barrier varactor diodes. , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  M. Mamor Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  Y. Lin Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current–voltage measurements , 2005 .

[43]  Z. Alferov,et al.  The history and future of semiconductor heterostructures , 1998 .

[44]  H. Osten,et al.  Schottky barrier inhomogeneities at contacts to carbon-containing silicon/germanium alloys , 2002 .

[45]  M. Reed,et al.  Electrically excited infrared emission from InN nanowire transistors. , 2007 .

[46]  F. Ren,et al.  Determination of MgO/GaN heterojunction band offsets by x-ray photoelectron spectroscopy , 2006 .

[47]  Ekmel Ozbay,et al.  Tunneling current via dislocations in Schottky diodes on AlInN/AlN/GaN heterostructures , 2009 .

[48]  A kinetic approach to tunnelling at Schottky contacts , 2006 .

[49]  S. Gwo,et al.  Polarization-induced valence-band alignments at cation- and anion-polar InN∕GaN heterojunctions , 2007 .

[50]  S. B. Krupanidhi,et al.  Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy , 2011 .

[51]  Takashi Mukai,et al.  P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes , 1993 .

[52]  A. T. Kalghatgi,et al.  Transport and infrared photoresponse properties of InN nanorods/Si heterojunction , 2011, Nanoscale research letters.

[53]  Y. J. Lee,et al.  Atomic-layer-deposited Al2O3 and HfO2 on GaN: A comparative study on interfaces and electrical characteristics , 2011 .

[54]  P. Dawson,et al.  BARRIER CHARACTERISTICS OF PtSi/p-Si SCHOTTKY DIODES AS DETERMINED FROM I-V-T MEASUREMENTS , 1996 .

[55]  J. Sullivan,et al.  Electron transport of inhomogeneous Schottky barriers: A numerical study , 1991 .

[56]  Supratik Guha,et al.  Ultraviolet and violet GaN light emitting diodes on silicon , 1998 .

[57]  A. Singh Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation , 1985 .

[58]  M. Saglam,et al.  Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes , 2007 .

[59]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[60]  S. B. Krupanidhi,et al.  Band alignment studies in InN/p-Si(100) heterojunctions by x-ray photoelectron spectroscopy , 2011 .

[61]  M. Shimizu,et al.  High-quality InGaN/GaN multiple quantum wells grown on Ga-polarity GaN by plasma-assisted molecular-beam epitaxy , 2001 .

[62]  Wei Mao,et al.  Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy , 2014, Nanoscale Research Letters.

[63]  G. Andrew D. Briggs,et al.  Growth modes in heteroepitaxy of InGaN on GaN , 2005 .

[64]  P. K. Rao,et al.  Temperature dependence of current-voltage (I-V) characteristics of Pt/Au Schottky contacts on n-type GaN , 2008 .

[65]  B. Gil,et al.  Raman scattering in large single indium nitride dots: Correlation between morphology and strain , 2003 .

[66]  Hadis Morkoç,et al.  Valence-band discontinuity between GaN and AlN measured by x-ray photoemission spectroscopy , 1994 .

[67]  J. Andrew Yeh,et al.  InN-based anion selective sensors in aqueous solutions , 2007 .

[68]  Vincenzo Fiorentini,et al.  MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .

[69]  D. Schaadt,et al.  Growth of A-plane GaN on (0 1 0) LiGaO2 by plasma-assisted MBE , 2010 .

[70]  A. T. Kalghatgi,et al.  Carrier‐transport studies of III‐nitride/Si3N4/Si isotype heterojunctions , 2012 .

[71]  Z. G. Wang,et al.  Measurement of polar C-plane and nonpolar A-plane InN/ZnO heterojunctions band offsets by x-ray photoelectron spectroscopy , 2009 .

[72]  T. P. Chow,et al.  Wide bandgap compound semiconductors for superior high-voltage unipolar power devices , 1994 .

[73]  Pierre Gibart,et al.  Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy , 2001 .

[74]  Michael S. Shur,et al.  Microwave performance of a 0.25 m gate AlGaN/GaN heterostructure field effect transistor , 1994 .

[75]  Sadafumi Yoshida,et al.  Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates , 1983 .

[76]  M. Lee,et al.  Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer , 2013 .

[77]  A. T. Kalghatgi,et al.  Effect of carrier concentration of InN on the transport behavior of InN/GaN heterostructure based Schottky junctions , 2012 .

[78]  Akito Kuramata,et al.  InGaN Laser Diode Grown on 6H–SiC Substrate Using Low-Pressure Metal Organic Vapor Phase Epitaxy , 1997 .

[79]  R. Beresford,et al.  Growth of group III nitrides on Si(111) by plasma‐assisted molecular beam epitaxy , 1994 .

[80]  James S. Speck,et al.  Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .

[81]  H. Amano,et al.  Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer , 1991 .

[82]  R. L. Meirhaeghe,et al.  Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts , 1994 .

[83]  S. M. Durbin,et al.  InN/GaN valence band offset : high-resolution x-ray photoemission spectroscopy measurements , 2008 .

[84]  O. Ambacher,et al.  Growth of a-plane InN on r-plane sapphire with a GaN buffer by molecular-beam epitaxy , 2003 .

[85]  A. T. Kalghatgi,et al.  Valence band offset at GaN/β-Si3N4 and β-Si3N4/Si(111) heterojunctions formed by plasma-assisted molecular beam epitaxy , 2012 .

[86]  M. Androulidaki,et al.  InN films and nanostructures grown on Si (111) by RF-MBE , 2009 .

[87]  Xiaodong Wang,et al.  Growth and properties of Mg-doped In-polar InN films , 2007 .

[88]  Robert F. Davis,et al.  Band offset measurements of the Si3N4/GaN (0001) interface , 2003 .

[89]  Theodore D. Moustakas,et al.  Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon , 1991 .

[90]  A. Yoshikawa,et al.  Fabrication and characterization of 20 periods InN/InGaN MQWs , 2006 .

[91]  Theeradetch Detchprohm,et al.  Schottky barrier on n‐type GaN grown by hydride vapor phase epitaxy , 1993 .

[92]  P. Kozodoy,et al.  Bias dependent microwave performance of AlGaN/GaN MODFET's up to 100 V , 1997, IEEE Electron Device Letters.

[93]  J. Kim,et al.  AlGaN/GaN metal–oxide–semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation , 2003 .

[94]  P. Bristowe,et al.  Atomic structure and electronic properties of the GaN/ZnO (0001) interface , 2005 .

[95]  H. Lee,et al.  Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN , 2003 .

[96]  A. T. Kalghatgi,et al.  Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes , 2011 .

[97]  Hideki Hasegawa,et al.  Insulator-GaN interface structures formed by plasma-assisted chemical vapor deposition , 2000 .

[98]  Henryk Temkin,et al.  HIGH QUALITY GAN GROWN ON SI(111) BY GAS SOURCE MOLECULAR BEAM EPITAXY WITH AMMONIA , 1999 .

[99]  Isamu Akasaki,et al.  Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE , 1989 .

[100]  Mahesh Kumar,et al.  Current transport in nonpolar a-plane InN/GaN heterostructures Schottky junction , 2012 .

[101]  A. T. Kalghatgi,et al.  Barrier height inhomogeneities in InN/GaN heterostructure based Schottky junctions , 2011 .

[102]  F. Giannazzo,et al.  Barrier inhomogeneity and electrical properties of Pt∕GaN Schottky contacts , 2007 .

[103]  Jürgen H. Werner,et al.  Barrier inhomogeneities at Schottky contacts , 1991 .

[104]  Nageh K. Allam,et al.  Interface properties determined the performance of thermally grown GaN/Si heterojunction solar cells , 2013 .

[105]  Dong-Wook Kim,et al.  Electrical Characterization of Pt Schottky Contacts to a- plane n-type GaN , 2011 .

[106]  Takashi Mukai,et al.  Cd-Doped InGaN Films Grown on GaN Films , 1993 .

[107]  Michael S. Shur,et al.  Potential performance of indium-nitride-based devices , 2006 .

[108]  T. Seong,et al.  Metallization contacts to nonpolar a-plane n-type GaN , 2008 .

[109]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[110]  A. Jahn,et al.  InN nanocolumns grown by plasma-assisted molecular beam epitaxy on A-plane GaN templates , 2009 .

[111]  W. Schmidt,et al.  Band offsets in cubic GaN/AlN superlattices , 2011 .

[112]  C. Poweleit,et al.  Observation of large electron drift velocities in InN by ultrafast Raman spectroscopy , 2005 .

[113]  Analysis of the temperature‐dependent current–voltage characteristics and the barrier‐height inhomogeneities of Au/GaN Schottky diodes , 2012 .

[114]  N. B. Smirnov,et al.  Deep traps in unpassivated and Sc2O3-passivated AlGaN/GaN high electron mobility transistors , 2003 .

[115]  S. Denbaars,et al.  Effect of threading dislocation density on Ni∕n-GaN Schottky diode I-V characteristics , 2006 .

[116]  A. T. Kalghatgi,et al.  Reduction of oxygen impurity at GaN/β-Si3N4/Si interface via SiO2 to Ga2O conversion by exposing of Si surface under Ga flux , 2011 .

[117]  Comment on “Numerical study of electrical transport in homogeneous Schottky diodes” [J. Appl. Phys. 85, 1935 (1999)] , 2000 .

[118]  Peide D. Ye,et al.  GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric , 2005 .

[119]  J. Carlin,et al.  Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells , 2007 .

[120]  H. Kamada,et al.  Band offsets of polar and nonpolar GaN/ZnO heterostructures determined by synchrotron radiation photoemission spectroscopy , 2011 .

[121]  R. T. Tung Recent advances in Schottky barrier concepts , 2001 .

[122]  Asen Asenov,et al.  Band offsets in III-nitride heterostructures , 2002 .

[123]  G. Lucovsky,et al.  Band offset measurements of the GaN (0001)/HfO2 interface , 2003 .

[124]  Y. Hao,et al.  Determination of polar C‐plane and nonpolar A‐plane AlN/GaN heterojunction band offsets by X‐ray photoelectron spectroscopy , 2014 .

[125]  Rishabh Mehandru,et al.  Characteristics of MgO/GaN gate-controlled metal–oxide– semiconductor diodes , 2002 .

[126]  J. Waldrop,et al.  Semiconductor Heterojunction Interfaces: Nontransitivity of Energy-band Discontiuities , 1988 .