Pantoea agglomerans pvs. gypsophilae and betae, recently evolved pathogens?

UNLABELLED SUMMARY Pantoea agglomerans pvs. gypsophilae and betae TAXONOMY Bacteria; Proteobacteria; gamma subdivision; order Enterobacteriales; family Enterobacteriaceae; species Pantoea agglomerans. Microbiological properties: Gram-negative, non-capsulated, non-spore-forming, predominately motile rode. Disease symptoms: Gall formation at wound sites, mainly in the crown region of the stem. The host range of P. agglomerans pv. gypsophilae is restricted to Gypsophila paniculata, whereas P. agglomerans pv. betae is pathogenic on Beta vulgaris and gypsophila. Disease control: Pathogenic-free transplants and sanitation. No resistant cultivars are available. Major virulence determinants: Pathogenicity plasmid (pPATH), hrp cluster, type III virulence effectors, phytohormones.

[1]  L. Valinsky,et al.  The dual function in virulence and host range restriction of a gene isolated from the pPATH (Ehg) plasmid of Erwinia herbicola pv. gypsophilae. , 2000, Molecular plant-microbe interactions : MPMI.

[2]  J. Leach,et al.  Bacterial avirulence genes. , 1996, Annual review of phytopathology.

[3]  G. Tsiamis,et al.  Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Guo,et al.  The presence of diverse IS elements and an avrPphD homologue that acts as a virulence factor on the pathogenicity plasmid of Erwinia herbicola pv. gypsophilae. , 2002, Molecular plant-microbe interactions : MPMI.

[5]  A. Sisto,et al.  Sequence Analysis of the hrpC Operon and the hrpE Gene of Pseudomonas syringae subsp. savastanoi , 2003 .

[6]  G. Bécard,et al.  The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. , 2000, Molecular plant-microbe interactions : MPMI.

[7]  S. Manulis Evaluation of a DNA probe for the detection of Erwinia herbicola strains pathogenic on Gypsophila paniculata , 1992 .

[8]  J. Mecsas,et al.  Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. , 1996, Emerging infectious diseases.

[9]  B. Carney,et al.  A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level , 1990, Journal of bacteriology.

[10]  R. Hunt,et al.  Two strains in the genus Erwinia cause galls on Douglas-fir in southwestern British Columbia , 1998 .

[11]  F. Gavini,et al.  Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and Description of Pantoea dispersa sp. nov. , 1989 .

[12]  David S Guttman,et al.  A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. , 2002, Science.

[13]  L. Valinsky,et al.  The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation , 1995, Journal of bacteriology.

[14]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[15]  H. Kamiunten Isolation and Characterization of Virulence Gene psvA on a Plasmid of Pseudomonas syringae pv. eriobotryae , 1999 .

[16]  X. Tu,et al.  A host-specific virulence protein of Erwinia herbicola pv. gypsophilae is translocated into human epithelial cells by the Type III secretion system of enteropathogenic Escherichia coli. , 2002, Molecular plant pathology.

[17]  R. O. Morris,et al.  Production of cytokinins by Erwinia herbicola pv. gypsophilae and isolation of a locus conferring cytokinin biosynthesis , 1995 .

[18]  A. Collmer,et al.  The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death , 1997, Journal of bacteriology.

[19]  L. Valinsky,et al.  The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. , 1997, Molecular plant-microbe interactions : MPMI.

[20]  T. Burr,et al.  Comparison of tumorigenic strains of Erwinia herbicola isolated from table beet with E. h. gypsophilae , 1991 .

[21]  Y. Gafni,et al.  Characteristics in tissue culture of hyperplasias induced by Erwinia herbicola pathovar gypsophilae , 1989 .

[22]  R. O. Morris Genes Specifying Auxin and Cytokinin Biosynthesis in Phytopathogens , 1986 .

[23]  Y. Gafni,et al.  Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae , 1993 .

[24]  D. Cooksey Galls of Gypsophila paniculata caused by Erwinia herbicola. , 1986 .

[25]  D. Opgenorth First Report of Bacterial Gall of Wisteria sinensis Caused by Erwinia herbicola pv. milletiae in California. , 1994 .

[26]  Y. Gafni,et al.  CHARACTERIZATION OF THE AUXIN SYNTHESIS GENES OF ERWINIA HERBICOLA PV. GYPSOPHILAE , 1997 .

[27]  S. Beer,et al.  Hybridization and functional complementation of the hrp gene cluster from Erwinia amylovora strain Ea321 with DNA of other bacteria , 1992 .

[28]  P. Lindgren The role of hrp genes during plant-bacterial interactions. , 1997, Annual review of phytopathology.

[29]  S. Beer,et al.  Pantoea agglomerans Strain EH318 Produces Two Antibiotics That Inhibit Erwinia amylovoraIn Vitro , 2001, Applied and Environmental Microbiology.

[30]  L. Valinsky,et al.  Regulation of hsvG, a host-specific virulence gene from Erwinia herbicola pv.gypsophilae☆ , 2002 .

[31]  A. Lichter,et al.  The operon for cytokinin biosynthesis of Erwinia herbicola pv. gypsophilae contains two promoters and is plant induced. , 2001, Canadian journal of microbiology.

[32]  S. Lindow,et al.  Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. , 1998, Molecular plant-microbe interactions : MPMI.

[33]  L. Valinsky,et al.  Detection of Erwinia herbicola pv. gypsophilae in gypsophila plants by PCR , 2004, European journal of plant pathology.

[34]  J. Wood,et al.  Molecular characterization of avrPphD, a widely-distributed gene from Pseudomonas syringae pv.phaseolicola involved in non-host recognition by pea (Pisum sativum)☆ , 2001 .

[35]  S. Lindow,et al.  Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola , 1996, Applied and environmental microbiology.

[36]  C. Boucher,et al.  Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. , 2002, Molecular plant pathology.

[37]  J. Dangl,et al.  Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. , 2000, Current opinion in microbiology.

[38]  Y. Gafni,et al.  Identification of a plasmid DNA probe for detection of strains of Erwinia herbicola pathogenic on Gypsophila paniculata , 1991 .

[39]  E. C. Teixeira,et al.  Comparison of the genomes of two Xanthomonas pathogens with differing host specificities , 2002, Nature.

[40]  L. Valinsky,et al.  A pathogenicity gene isolated from the pPATH plasmid of Erwinia herbicola pv. gypsophilae determines host specificity. , 1998, Molecular plant-microbe interactions : MPMI.

[41]  L. Valinsky,et al.  IS1327, a new insertion-like element in the pathogenicity-associated plasmid of Erwinia herbicola pv. gypsophilae. , 1996, Molecular plant-microbe interactions : MPMI.

[42]  M. Zuck,et al.  Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. , 2001, Molecular plant-microbe interactions : MPMI.

[43]  J. Galán,et al.  Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells , 1999 .