Chloromethylation as a functionalisation pathway for metal–organic frameworks

A mild and safe chloromethylation of metal–organic frameworks is presented. After this post-synthetic functionalization, chlorine can be substituted by a wide range of moieties to obtain various multifunctional materials. The method can in principle be extended to coordination polymers with exposed aromatic rings.

[1]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[2]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[3]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[4]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[5]  M. Hunger,et al.  Adsorbate Effect on AlO4(OH)2 Centers in the Metal-Organic Framework MIL-53 Investigated by Solid-State NMR Spectroscopy , 2010 .

[6]  Seth M. Cohen,et al.  Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. , 2010, Inorganic chemistry.

[7]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[8]  A. Rheingold,et al.  Synthesis and structure of intermediates in copper-catalyzed alkylation of diphenylphosphine. , 2010, Inorganic chemistry.

[9]  A. Devaux,et al.  Highly emissive metal—organic framework composites by host—guest chemistry , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[10]  C. Pinel,et al.  Generic postfunctionalization route from amino-derived metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[11]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[12]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[13]  Freek Kapteijn,et al.  Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts , 2010 .

[14]  A. Ghoufi,et al.  Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. , 2009, Journal of the American Chemical Society.

[15]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[16]  Daniel Gunzelmann,et al.  [Al4(OH)2(OCH3)4(H2N-bdc)3] x xH(2)O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. , 2009, Angewandte Chemie.

[17]  Kimoon Kim,et al.  Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. , 2009, Journal of the American Chemical Society.

[18]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[19]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[20]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[21]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[22]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[23]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[24]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[25]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[26]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[27]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[28]  J. Montheard,et al.  CHLOROMETHYLATION OF POLYSTYRENES AND STYRENE COPOLYMERS. APPLICATIONS , 1987 .

[29]  F. Roe CHLOROMETHYLATION: THREE LUNG CANCER DEATHS IN YOUNG MEN , 1985, The Lancet.

[30]  A. Mckillop,et al.  A simple and inexpensive procedure for chloromethylation of certain aromatic compounds , 1983 .