Axiomatic Characterizations of Information Measures

Axiomatic characterizations of Shannon entropy, Kullback I-divergence, and some generalized information measures are surveyed. Three directions are treated: (A) Characterization of functions of probability distributions suitable as information measures. (B) Characterization of set functions on the subsets of {1; : : : ;N} representable by joint entropies of components of an N-dimensional random vector. (C) Axiomatic characterization of MaxEnt and related inference rules. The paper concludes with a brief discussion of the relevance of the axiomatic approach for information theory.

[1]  J. Neumann Thermodynamik quantenmechanischer Gesamtheiten , 1927 .

[2]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .

[3]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[4]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[5]  H. Tverberg A New Derivation of the Information Function. , 1958 .

[6]  I. N. Sanov On the probability of large deviations of random variables , 1958 .

[7]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[8]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[9]  T. Chaundy,et al.  On a Functional Equation , 1960 .

[10]  A. Rényi On Measures of Entropy and Information , 1961 .

[11]  R. Ingarden,et al.  Information without probability , 1962 .

[12]  Z. Daróczy über die gemeinsame Charakterisierung der zu den nicht vollstÄndigen Verteilungen gehörigen Entropien von Shannon und von Rényi , 1963 .

[13]  Z. Daróczy Über Mittelwerte und Entropien Vollständiger Wahrscheinlichkeitsverteilungen , 1964 .

[14]  P. M. Lee On the Axioms of Information Theory , 1964 .

[15]  L. L. Campbell,et al.  A Coding Theorem and Rényi's Entropy , 1965, Inf. Control..

[16]  A. Rényi On the Foundations of Information Theory , 1965 .

[17]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[18]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[19]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[20]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[21]  R. Sibson Information radius , 1969 .

[22]  Zoltán Daróczy,et al.  Generalized Information Functions , 1970, Inf. Control..

[23]  Z. Daróczy On the measurable solutions of a functional equation , 1971 .

[24]  Suguru Arimoto,et al.  Information-Theoretical Considerations on Estimation Problems , 1971, Inf. Control..

[25]  I. Csiszár A class of measures of informativity of observation channels , 1972 .

[26]  P. Fischer On the inequality Σpif(pi)≥ pif(qi) , 1972 .

[27]  C. T. Ng,et al.  Measurable solutions of functional equations related to information theory , 1973 .

[28]  C. T. Ng,et al.  Why the Shannon and Hartley entropies are ‘natural’ , 1974, Advances in Applied Probability.

[29]  C. T. Ng,et al.  A functional equation and its application to information theory , 1974 .

[30]  George T. Diderrich,et al.  The Role of Boundedness in Characterizing Shannon Entropy , 1975, Inf. Control..

[31]  János Aczél,et al.  A mixed theory of information. I: symetric, recursive and measurable entropies of randomized systems of events , 1978, RAIRO Theor. Informatics Appl..

[32]  Moshe Ben-Bassat,et al.  f-Entropies, probability of Error, and Feature Selection , 1978, Inf. Control..

[33]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[34]  Gyula Maksa On the bounded solutions of a functional equation , 1981 .

[35]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[36]  Charles L. Byrne,et al.  General entropy criteria for inverse problems, with applications to data compression, pattern classification, and cluster analysis , 1990, IEEE Trans. Inf. Theory.

[37]  Jeff B. Paris,et al.  A note on the inevitability of maximum entropy , 1990, Int. J. Approx. Reason..

[38]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[39]  I. Csiszár Generalized Cutoff Rates and Renyi's Information Measures , 1993, Proceedings. IEEE International Symposium on Information Theory.

[40]  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[41]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[42]  P. K. Sahoo,et al.  Characterizations of information measures , 1998 .

[43]  R. Yeung,et al.  2cterization of Entropy Function via Information Inequalities , 1998 .

[44]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[45]  A. Dawid,et al.  Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.

[46]  Rudolf Ahlswede,et al.  An Interpretation of Identification Entropy , 2006, IEEE Transactions on Information Theory.

[47]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[48]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.