Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning

[1]  Amber L. Simpson,et al.  Radiomic Analysis: Study Design, Statistical Analysis, and Other Bias Mitigation Strategies. , 2022, Radiology.

[2]  Sung Soo Ahn,et al.  Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation , 2022, Scientific Reports.

[3]  L. Sunwoo,et al.  Artificial Intelligence in Neuroimaging: Clinical Applications , 2022, Investigative Magnetic Resonance Imaging.

[4]  Young-Hoon Kim,et al.  The risk factors for high-grade meningioma in brain and spine: A systematic review and meta-analysis. , 2021, World neurosurgery.

[5]  Se Hoon Kim,et al.  Quality assessment of meningioma radiomics studies: Bridging the gap between exploratory research and clinical applications. , 2021, European journal of radiology.

[6]  D. Hwang,et al.  Robust performance of deep learning for automatic detection and segmentation of brain metastases using three-dimensional black-blood and three-dimensional gradient echo imaging , 2021, European Radiology.

[7]  Taejoon Eo,et al.  Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method , 2021, Medical Image Anal..

[8]  Vikas Dwivedi,et al.  A clinico-pathological and neuro-radiological study of angiomatous meningioma: Aggressive look with benign behaviour , 2020, Journal of Clinical Neuroscience.

[9]  D. Hwang,et al.  어텐션 기법 및 의료 영상에의 적용에 관한 최신 동향 , 2020, Taehan Yongsang Uihakhoe chi.

[10]  E. Neromyliotis,et al.  Machine Learning in Meningioma MRI: Past to Present. A Narrative Review , 2020, Journal of magnetic resonance imaging : JMRI.

[11]  Leland S. Hu,et al.  Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas. , 2020, Neuro-oncology.

[12]  Sang Hyun Park,et al.  Magnetic resonance imaging–based 3-dimensional fractal dimension and lacunarity analyses may predict the meningioma grade , 2020, European Radiology.

[13]  M. Perkuhn,et al.  Automated Meningioma Segmentation in Multiparametric MRI , 2020, Clinical Neuroradiology.

[14]  Raymond Y Huang,et al.  Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases (BTIP-BM). , 2020, Neuro-oncology.

[15]  Anuj Bhardwaj,et al.  A review on brain tumor segmentation of MRI images. , 2019, Magnetic resonance imaging.

[16]  A. della Puppa,et al.  Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study , 2019, Journal of magnetic resonance imaging : JMRI.

[17]  Raymond Y Huang,et al.  Proposed response assessment and endpoints for meningioma clinical trials: report from the Response Assessment in Neuro-Oncology Working Group. , 2018, Neuro-oncology.

[18]  S. Choi,et al.  Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients , 2018, Neuro-oncology.

[19]  Se Hoon Kim,et al.  Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging , 2018, European Radiology.

[20]  D. Maintz,et al.  Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI , 2018, European Radiology.

[21]  Sung Soo Ahn,et al.  Deep-learned 3D black-blood imaging using automatic labelling technique and 3D convolutional neural networks for detecting metastatic brain tumors , 2018, Scientific Reports.

[22]  Taeseong Kim,et al.  KIKI‐net: cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images , 2018, Magnetic resonance in medicine.

[23]  A. von Deimling,et al.  Diagnostic challenges in meningioma. , 2017, Neuro-oncology.

[24]  Snehashis Roy,et al.  Robust skull stripping using multiple MR image contrasts insensitive to pathology , 2017, NeuroImage.

[25]  Stefan Leger,et al.  Image biomarker standardisation initiative version 1 . 4 , 2016, 1612.07003.

[26]  M. Pain,et al.  Can MRI predict meningioma consistency?: a correlation with tumor pathology and systematic review , 2018, Neurosurgical Review.

[27]  S. Endo,et al.  Reliability of the Size Evaluation Method for Meningiomas: Maximum Diameter, ABC/2 Formula, and Planimetry Method. , 2016, World neurosurgery.

[28]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[29]  J. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. , 2016, Neuro-oncology.

[30]  G. Barnett,et al.  Descriptive epidemiology of World Health Organization grades II and III intracranial meningiomas in the United States. , 2015, Neuro-oncology.

[31]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[32]  Mitsutoshi Nakada,et al.  Prediction of high-grade meningioma by preoperative MRI assessment , 2012, Journal of Neuro-Oncology.

[33]  D. G. Kim,et al.  Microcystic meningiomas: radiological characteristics of 16 cases , 2005, Acta Neurochirurgica.

[34]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.