Under-exploited wild Vigna species potentials in human and animal nutrition: A review

Abstract Food insecurity, protein-energy malnutrition, and food-feed competition have motivated the search for alternative food and feed sources for human and animal nutrition. According to the FAO, only four crop species provide half of the plant-based calories in the human diet. This review, with an inquisitive focus on investigating alternative potential food and feed sources, has revealed that the Vigna genus (an important group of legumes) possesses more than a 100 species from which only 10 have been domesticated and are being given better attention. Thus, more than 90 species are still under-exploited despite their probable huge potential to alleviate food insecurity either by adding food varieties (domestication) or by providing information for breeding purposes. The review further demonstrates that the utilization of the wild Vigna species for both human food and animal feed is still very limited because of the unawareness of their potentials over some improved varieties which are facing challenges. An increased scientific effort towards exploring the potentials of wild legumes is recommended in planning the future food strategies.

[1]  C. Omonhinmin,et al.  Morphological Diversity and Cytological Studies in Some Accessions of Vigna vexillata (L.) A. Richard , 2017 .

[2]  Saraladevi Muthusamy,et al.  Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces , 2008 .

[3]  O. Obembe,et al.  Morphological intraspecific variabilities in African yam bean (AYB) (Sphenostylis stenocarpa Ex. A. Rich) Harms , 2011 .

[4]  S. Lakhanpaul,et al.  Diversity and genetic resources of wild Vigna species in India , 2005, Genetic Resources and Crop Evolution.

[5]  F. Saura-calixto,et al.  Composition of underexploited Indian pulses. Comparison with common legumes , 1999 .

[6]  M. Davey,et al.  Inheritance of ‘domestication’ traits in bambara groundnut (Vigna subterranea (L.) Verdc.) , 2007, Euphytica.

[7]  R. Varshney,et al.  Genomics, genetics and breeding of tropical legumes for better livelihoods of smallholder farmers , 2018, Plant breeding = Zeitschrift fur Pflanzenzuchtung.

[8]  R. Osorio-Osorio,et al.  Biofortification of cowpea beans with iron: iron´s influence on mineral content and yield , 2015 .

[9]  V. Lattanzio,et al.  Flavonoid HPLC fingerprints of wild Vigna species , 1997 .

[10]  Rajeev K. Varshney,et al.  Draft genome sequence of adzuki bean, Vigna angularis , 2015, Scientific Reports.

[11]  A. Ghafoor,et al.  Diversity of agronomic traits and total seed protein in black gram Vigna mungo [L.] Hepper , 2005 .

[12]  P. Gepts,et al.  Isozyme Diversity in Bambara Groundnut , 1999 .

[13]  N. Tomooka,et al.  Genetic Diversity of the Vigna Germplasm from Thailand and Neighboring Regions Revealed by AFLP Analysis , 2006, Genetic Resources and Crop Evolution.

[14]  S. Padulosi,et al.  Fighting poverty, hunger and malnutrition with neglected and underutilized species: needs, challenges and the way forward , 2013 .

[15]  M. Yamaguchi,et al.  World Vegetables: Principles, Production and Nutritive Values , 1983 .

[16]  Norihiko Tomooka,et al.  The Genetics of Domestication of the Azuki Bean (Vigna angularis) , 2008, Genetics.

[17]  G. Kahl,et al.  Genetic diversity and phylogenetic relationships in Vigna Savi germplasm revealed by DNA amplification fingerprinting. , 2007, Genome.

[18]  K. Naito,et al.  Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions , 2016, PloS one.

[19]  Sift Desk Journals Open Access Journals,et al.  Nutritional Composition and Sensory Attributes of ‘Kunnu-Aya’ Fortified with Vigna-racemosa Flour , 2017 .

[20]  J. Smartt,et al.  Food and Feed from Legumes and Oilseeds , 1995 .

[21]  M. Garg,et al.  Cowpea , 2018, Pulses and their By-Products as Animal Feed.

[22]  D. Bastianelli,et al.  Mung bean (Vigna radiata) , 2015 .

[23]  G. Mohan Naik,et al.  Mung Bean , 2020, Pulses.

[24]  Mohar Singh,et al.  Broadening the Genetic Base of Grain Legumes , 2014, Springer India.

[25]  C. B. Peña-Valdivia,et al.  Morphological and Agronomic Traits of a Wild Population and an Improved Cultivar of Common Bean ( Phaseolus vulgaris L.) , 1997 .

[26]  P. Gepts ORIGINS OF PLANT AGRICULTURE AND MAJOR CROP PLANTS , 2011 .

[27]  S. Isobe,et al.  Detection of Genome Donor Species of Neglected Tetraploid Crop Vigna reflexo-pilosa (Créole Bean), and Genetic Structure of Diploid Species Based on Newly Developed EST-SSR Markers from Azuki Bean (Vigna angularis) , 2014, PloS one.

[28]  Anita R. Linnemann Vigna subterranea (L.) Verdc. , 1989 .

[29]  How to Feed the World in 2050 , 2009 .

[30]  J. Kinabo,et al.  Nutritional quality and utilization of local and improved cowpea varieties in some regions in Tanzania , 2011 .

[31]  U. Ndidi,et al.  Changes in nutrient and antinutrient composition of Vigna racemosa flour in open and controlled fermentation , 2015, Journal of Food Science and Technology.

[32]  Jie Liu Quinoa , 2019, Bioactive Factors and Processing Technology for Cereal Foods.

[33]  R. Papa,et al.  AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types , 2002, Theoretical and Applied Genetics.

[34]  P. Hunter The genetics of domestication , 2018, EMBO reports.

[35]  B. Maass,et al.  Assessment of the importance and utilization of cowpea (Vigna unguiculata L. Walp.) as leafy vegetable in small-scale farm households in Tanzania - East Africa , 2009 .

[36]  A. Watkinson,et al.  Habitats, morphological diversity, and distribution of the genus Vigna Savi in Australia , 2002 .

[37]  M. Laing,et al.  Phenotypic characterization of diverse Bambara groundnut (Vigna subterranea [L.] Verdc.) germplasm collections through seed morphology , 2016, Genetic Resources and Crop Evolution.

[38]  G. Tucker,et al.  Nutritional potential of nine underexploited legumes in Southwest Nigeria. , 2015 .

[39]  R. Hillocks,et al.  BAMBARA NUT: A REVIEW OF UTILISATION, MARKET POTENTIAL AND CROP IMPROVEMENT , 2012 .

[40]  F. Anwar,et al.  Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. , 2007, Journal of food science.

[41]  H. T. Stalker,et al.  Enhancing Crop Gene Pools with Beneficial Traits Using Wild Relatives , 2008 .

[42]  J. Popoola,et al.  Morphometric Analysis of some Species in the Genus Vigna (L.) Walp: Implication for Utilization for Genetic Improvement , 2015 .

[43]  J. Christiansen,et al.  Morphological Diversity of Bambara Groundnut [Vigna subterranea (L.) Verdc.] Landraces in Tanzania , 2006, Genetic Resources and Crop Evolution.

[44]  H. Sakai,et al.  Evolution, domestication and neo-domestication of the genus Vigna , 2014, Plant Genetic Resources.

[45]  A. Karim,et al.  Exploring the Nutritional Potential of Wild and Underutilized Legumes , 2009 .

[46]  S. Nielsen,et al.  Physical and chemical attributes of cowpea lines resistant and susceptible to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) , 1989 .

[47]  S. Padulosi,et al.  A Holistic Approach to Enhance the Use of Neglected and Underutilized Species: The Case of Andean Grains in Bolivia and Peru , 2014 .

[48]  A. Walter World Vegetables Principles Production And Nutritive Values , 2016 .

[49]  A. Iswandi,et al.  Vigna vexillata (L.) A. Rich. Cultivated as a Root Crop in Bali and Timor , 2006, Genetic Resources and Crop Evolution.

[50]  C. Mba,et al.  Re-orienting crop improvement for the changing climatic conditions of the 21st century , 2012, Agriculture & Food Security.

[51]  D. Fuller,et al.  The archaeobotany of Indian pulses: identification, processing and evidence for cultivation , 2006 .

[52]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[53]  Paramasamy Gunasekaran,et al.  Genome Sequencing of a Mung Bean Plant Growth Promoting Strain of P. aeruginosa with Biocontrol Ability , 2014, International journal of genomics.

[54]  V. Negri,et al.  Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata subsp. unguiculata) landraces. , 2002, Genome.

[55]  P. Somta,et al.  Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers , 2015, Breeding science.

[56]  C. Cullis,et al.  Unlocking the potential of orphan legumes. , 2016, Journal of experimental botany.

[57]  F. Caracciolo,et al.  Improving rural livelihoods through the conservation and use of underutilized species: evidence from a community research project in Yemen , 2013 .

[58]  G. Acquaah Principles of plant genetics and breeding , 2006 .

[59]  E. Arendt,et al.  Cereal Grains for the Food and Beverage Industries , 2013 .

[60]  N. Tomooka,et al.  Comparison of the Pattern of Crop Domestication between Two Asian Beans, Azuki Bean (Vigna angularis) and Rice Bean (V. umbellata) , 2011 .

[61]  Z. Ahmad,et al.  Genetic diversity in blackgram (Vigna mungo L. Hepper) , 2001 .

[62]  До Ньы Тиен Особенности влияния экстремальных условий окружающей среды в провинции Тхайнгуен Вьетнама на вырождение сортов золотистой фасоли "Vigna radiata L. (R) Wilczek" , 2008 .

[63]  E. Carnovale,et al.  Chemical evaluation of wild under-exploited Vigna spp. seeds , 1997 .

[64]  Ratikanta Behura,et al.  Cowpea [Vigna unguiculata (L.) Walp]. , 2015, Methods in molecular biology.

[65]  D. Diouf Recent advances in cowpea [ Vigna unguiculata (L.) Walp.] “omics” research for genetic improvement , 2011 .

[66]  A. Joshi,et al.  Genetic diversity analysis in different genotypes of black gram[Vigna mungo (L.) Hepper] using RAPD marker , 2016 .

[67]  Susan McCouch,et al.  Diversifying Selection in Plant Breeding , 2004, PLoS biology.

[68]  P. Singh,et al.  Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence , 2016, Biochemistry research international.

[69]  J. Souframanien,et al.  A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers , 2004, Theoretical and Applied Genetics.