Regression spline mixed models: A forestry example

In this article, regression splines are used inside linear mixed models to explore nonlinear longitudinal data. The regression spline bases are generated using a single knot chosen using biological information—a knot position supported by an automated knot selection procedure. A variety of inferential procedures are compared. The variance in the data was closely modeled using a flexible model-based covariance structure, a robust method and the nonparametric bootstrap, while the variance was underestimated when independent random effects were assumed.

[1]  Wensheng Guo Functional Mixed Effects Models , 2002 .

[2]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[3]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[4]  Marie Davidian,et al.  Consequences of misspecifying assumptions in nonlinear mixed effects models , 2000 .

[5]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[6]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[7]  T A Louis,et al.  Random effects models with non-parametric priors. , 1992, Statistics in medicine.

[8]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[9]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[10]  R. Burdon Annual growth stages for height and diameter in Pinus radiata. , 1994 .

[11]  Helen Brown,et al.  Applied Mixed Models in Medicine , 2000, Technometrics.

[12]  G. Verbeke,et al.  The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data , 1997 .

[13]  S. Wood Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .

[14]  E. Vonesh,et al.  Linear and Nonlinear Models for the Analysis of Repeated Measurements , 1996 .

[15]  R. Littell SAS System for Mixed Models , 1996 .

[16]  Lauri Mehtätalo,et al.  A longitudinal height-diameter model for Norway spruce in Finland , 2004 .

[17]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[18]  Oscar García HEIGHT GROWTH OF PINUS RADIATA IN NEW ZEALAND , 1999 .

[19]  J. Hardin,et al.  Generalized Linear Models and Extensions , 2001 .

[20]  M. Wand,et al.  Smoothing with Mixed Model Software , 2004 .

[21]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[22]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[23]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[24]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[25]  S. Candy,et al.  Growth and yield models for Eucalyptus nitens plantations in Tasmania and New Zealand. , 1997 .

[26]  Rafael Calama,et al.  Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain , 2004 .

[27]  S. Wold Spline Functions in Data Analysis , 1974 .

[28]  X. Lin,et al.  Inference in generalized additive mixed modelsby using smoothing splines , 1999 .

[29]  P. M. E. Altham,et al.  Improving the Precision of Estimation by Fitting a Model , 1984 .

[30]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[31]  Jeffrey S. Morris The BLUPs are not "best" when it comes to bootstrapping , 2002 .

[32]  M. Wand,et al.  Simple fitting of subject‐specific curves for longitudinal data , 2005, Statistics in medicine.

[33]  Nonlinear Models for Repeated Measurement Data , 1996 .

[34]  J. D. Rienzo,et al.  Basal area growth curves for Pinus patula in two areas of the Calamuchita Valley, Córdoba, Argentina , 1999 .

[35]  H. Akaike A new look at the statistical model identification , 1974 .