Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence

The absorbance, reflectance, and transmittance of a linearly polarized, obliquely incident plane wave were calculated for the planar interface of a metal and a sculptured nematic thin film (SNTF) in the Kretschmann configuration, the wave vector of that plane wave being arbitrarily oriented with respect to the morphologically significant plane of the SNTF. The permittivity profile of the chosen SNTF was supposed to have been sculptured during physical vapor deposition by varying the vapor incidence angle sinusoidally about a mean value. Regardless of the orientation of the wave vector, multiple surface-plasmon-polariton (SPP) trains or waves of the same color but different phase speeds and guided by the metal/SNTF interface can be excited.

[1]  Y. Jen,et al.  Surface plasmon resonance via polarization conversion in a weak anisotropic thin film , 2009 .

[2]  I. Abdulhalim Surface plasmon TE and TM waves at the anisotropic film–metal interface , 2009 .

[3]  T. Davis Surface plasmon modes in multi-layer thin-films , 2009 .

[4]  A. Lakhtakia,et al.  On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  A. Lakhtakia,et al.  Morphological effects on surface-plasmon-polariton waves at the planar interface of a metal and a columnar thin film , 2008 .

[6]  Zhao Lu Accurate calculation of reflectance spectra for thick one-dimensional inhomogeneous optical structures and media: stable propagation matrix method. , 2008, Optics letters.

[7]  Ibrahim Abdulhalim,et al.  Surface Plasmon Resonance for Biosensing: A Mini-Review , 2008 .

[8]  R. Messier The nano-world of thin films , 2008 .

[9]  A. Lakhtakia,et al.  Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film , 2008 .

[10]  A. Lakhtakia,et al.  Morphological influence on surface--wave propagation at the planar interface of a metal film and a columnar thin film , 2007, 0706.4300.

[11]  Y. Jen,et al.  Optical constant determination of an anisotropic thin film via polarization conversion. , 2007, Optics express.

[12]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[13]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[14]  A. Lakhtakia,et al.  Sculptured nematic thin films with periodically modulated tilt angle as rugate filters , 2005 .

[15]  Dilip K. Paul,et al.  Sculptured Thin Films: Nanoengineered Morphology and Optics , 2005 .

[16]  A. I. Maaroof,et al.  Optical response in nanostructured thin metal films with dielectric over-layers , 2004 .

[17]  Hilmar Franke,et al.  Selective optical detection of aromatic vapors. , 2002, Applied optics.

[18]  A. Lakhtakia Sculptured thin films: accomplishments and emerging uses , 2001, cond-mat/0112070.

[19]  Huajian Gao,et al.  Technique for characterizing azimuthal anchoring of twisted nematic liquid crystals using half-leaky guided modes , 2001 .

[20]  Ian J. Hodgkinson,et al.  Sculptured-thin-film spectral holes for optical sensing of fluids , 2001 .

[21]  A. Lakhtakia,et al.  On the Motohiro-Taga interface for biaxial columnar media , 1998 .

[22]  I. Hodgkinson,et al.  Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. , 1998, Applied optics.

[23]  H. Macleod,et al.  Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. , 1997, Biophysical journal.

[24]  Akhlesh Lakhtakia,et al.  Engineered sculptured nematic thin films , 1997 .

[25]  R. Depine,et al.  Resonant excitation of surface modes at a single flat uniaxial–metal interface , 1997 .

[26]  M. Haraguchi,et al.  Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics , 1995 .

[27]  Yang,et al.  Long-range surface modes supported by thin films. , 1991, Physical review. B, Condensed matter.

[28]  J. Sambles,et al.  Polarization Conversion Using Prism-coupled Surface Plasmon-polaritons , 1991 .

[29]  J. Sambles,et al.  Surface Plasmon-polaritons on an Anisotropic Substrate , 1990 .

[30]  C. Pearson,et al.  Surface plasmon resonance studies of gas effects in phthalocyanine Langmuir-Blodgett films☆ , 1988 .

[31]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[32]  J. Sambles,et al.  Detection of surface director reorientation in a nematic liquid crystal , 1987 .

[33]  John Roy Sambles,et al.  Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection , 1987 .

[34]  D. Mihalache,et al.  Nonlinear TE-polarized surface plasmon polaritons guided by metal films , 1986 .

[35]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[36]  G. J. Sprokel,et al.  Determination of the Surface Tilt Angle by Attenuated Total Reflection , 1981 .

[37]  P. Tien Integrated optics and new wave phenomena in optical waveguides , 1977 .

[38]  H. Simon,et al.  Surface plasmons in silver films—a novel undergraduate experiment , 1975 .

[39]  V. A. I︠A︡kubovich,et al.  Linear differential equations with periodic coefficients , 1975 .

[40]  H. Ehrenreich,et al.  Optical Properties of Aluminum , 1963 .

[41]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .