Band Gap of Hexagonal InN and InGaN Alloys

A survey of most recent studies of optical absorption, photoluminescence, photoluminescence excitation, and photomodulated reflectance spectra of single-crystalline hexagonal InN layers is presented. The samples studied were undoped n-type InN with electron concentrations between 6 × 10 18 and 4 × 10 19 cm -3 . It has been found that hexagonal InN is a narrow-gap semiconductor with a band gap of about 0.7 eV, which is much lower than the band gap cited in the literature. We also describe optical investigations of In-rich In x Ga 1-x N alloy layers (0.36 < x < 1) which have shown that the bowing parameter of b ∼ 2.5 eV allows one to reconcile our results and the literature data for the band gap of In x Ga 1-x N alloys over the entire composition region. Special attention is paid to the effects of post-growth treatment of InN crystals. It is shown that annealing in vacuum leads to a decrease in electron concentration and considerable homogenization of the optical characteristics of InN samples. At the same time, annealing in an oxygen atmosphere leads to formation of optically transparent alloys of InN-In 2 O 3 type, the band gap of which reaches approximately 2 eV at an oxygen concentration of about 20%. It is evident from photoluminescence spectra that the samples saturated partially by oxygen still contain fragments of InN of mesoscopic size.