Modeling Learner Mood In Realtime Through Biosensors For Intelligent Tutoring Improvements

[1]  E Donchin,et al.  The mental prosthesis: assessing the speed of a P300-based brain-computer interface. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[2]  T. Martínez,et al.  Competitive Hebbian Learning Rule Forms Perfectly Topology Preserving Maps , 1993 .

[3]  Beverly Park Woolf,et al.  A Roadmap for Education Technology , 2011 .

[4]  Joseph P. Magliano,et al.  Collaborative dialogue patterns in naturalistic one-to-one tutoring , 1995 .

[5]  F. Craik,et al.  The effects of divided attention on encoding and retrieval processes in human memory. , 1996, Journal of experimental psychology. General.

[6]  Arthur C. Graesser,et al.  Better to be frustrated than bored: The incidence, persistence, and impact of learners' cognitive-affective states during interactions with three different computer-based learning environments , 2010, Int. J. Hum. Comput. Stud..

[7]  Michael Werman,et al.  An On-Line Agglomerative Clustering Method for Nonstationary Data , 1999, Neural Computation.

[8]  时慧 Intrinsic Motivation in the Classroom , 2011 .

[9]  Jacquelyn Schachter,et al.  Corrective feedback in historical perspective , 1991 .

[10]  Omar AlZoubi,et al.  Classification of EEG for Affect Recognition: An Adaptive Approach , 2009, Australasian Conference on Artificial Intelligence.

[11]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[12]  Kenneth D. Harris,et al.  Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years , 2008, Behavioural Brain Research.

[13]  R. Likert “Technique for the Measurement of Attitudes, A” , 2022, The SAGE Encyclopedia of Research Design.

[14]  Juan M. Corchado,et al.  Hybrid learning machines , 2009, Neurocomputing.

[15]  Cornelis A.W. Glas,et al.  Computerized adaptive testing : theory and practice , 2000 .

[16]  Arthur C. Graesser,et al.  AutoTutor: an intelligent tutoring system with mixed-initiative dialogue , 2005, IEEE Transactions on Education.

[17]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[18]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[19]  Viet Trinh,et al.  Contextualizing observational data for modeling human performance , 2009 .

[20]  Wadi Haddad Educational effects of class size , 1978 .

[21]  Geraldine Clarebout,et al.  The contribution of learner characteristics in the development of computer-based adaptive learning environments , 2011, Comput. Hum. Behav..

[22]  J Volavka,et al.  Effects of caffeine on resting EEG and response to sine wave modulated light. , 1981, Electroencephalography and clinical neurophysiology.

[23]  Gregory A. Miller,et al.  Individual differences in imagery and the psychophysiology of emotion , 1987 .

[24]  Antonija Mitrovic,et al.  Intelligent tutors for all: Constraint-based modeling methodology, systems and authoring , 2007 .

[25]  Sandra P Marshall,et al.  Identifying cognitive state from eye metrics. , 2007, Aviation, space, and environmental medicine.

[26]  John R. Anderson,et al.  Production systems, learning, and tutoring , 1987 .

[27]  Kilseop Ryu,et al.  Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic , 2005 .

[28]  Kasia Muldner,et al.  Ranking Feature Sets for Emotion Models Used in Classroom Based Intelligent Tutoring Systems , 2010, UMAP.

[29]  Sandra Katz,et al.  Modeling the Student in Sherlock II , 1992 .

[30]  Arthur C. Graesser,et al.  Toward an Affect-Sensitive AutoTutor , 2007, IEEE Intelligent Systems.

[31]  Jacqueline Bourdeau,et al.  Advances in Intelligent Tutoring Systems , 2010 .

[32]  I. Arroyo,et al.  Addressing Cognitive Differences and Gender During Problem Solving , 2006 .

[33]  James C. Lester,et al.  Generalizing Models of Student Affect in Game-Based Learning Environments , 2011, ACII.

[34]  Kurt VanLehn,et al.  The Andes Physics Tutoring System: Five Years of Evaluations , 2005, AIED.

[35]  Rafael A. Calvo,et al.  Frontiers of Affect-Aware Learning Technologies , 2012, IEEE Intelligent Systems.

[36]  D A Kobus,et al.  DARPA Improving Warfighter Information Intake Under Stress -- Augmented Cognition. Volume 1. Phase 2: Concept Validation Experiment , 2006 .

[37]  Joseph M. Scandura,et al.  What TutorIT Can Do Better Than a Human and Why: Now and in the Future* , 2011 .

[38]  Valerie J. Shute,et al.  Intelligent Tutoring Systems: Past, Present, and Future. , 1994 .

[39]  John R. Anderson,et al.  Cognitive principles in the design of computer tutors , 1984 .

[40]  Lorenzo Rosasco,et al.  Are Loss Functions All the Same? , 2004, Neural Computation.

[41]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[42]  M. Eysenck,et al.  Anxiety and Performance: The Processing Efficiency Theory , 1992 .

[43]  Normand Teasdale,et al.  Real-time eye blink detection with GPU-based SIFT tracking , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[44]  J. D. Fletcher,et al.  DARPA Education Dominance Program: April 2010 and November 2010 Digital Tutor Assessments , 2011 .

[45]  Cristina Conati,et al.  Probabilistic assessment of user's emotions in educational games , 2002, Appl. Artif. Intell..

[46]  Andrew L. Kun,et al.  Estimating cognitive load using remote eye tracking in a driving simulator , 2010, ETRA.

[47]  Ian Pitt,et al.  Evaluating a Brain-Computer Interface to Categorise Human Emotional Response , 2010, 2010 10th IEEE International Conference on Advanced Learning Technologies.

[48]  A. Graesser,et al.  Monitoring Affective Trajectories during Complex Learning , 2007 .

[49]  James C. Lester,et al.  Achieving Affective Impact: Visual Emotive Communication in Lifelike Pedagogical Agents , 1999 .

[50]  Beverly Park Woolf,et al.  Actionable Affective Processing for Automatic Tutor Interventions , 2011 .

[51]  M. Lepper,et al.  Motivational techniques of expert human tutors: Lessons for the design of computer-based tutors. , 1993 .

[52]  Jacob Cohen,et al.  QUANTITATIVE METHODS IN PSYCHOLOGY A Power Primer , 1992 .

[53]  K. VanLehn The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems , 2011 .

[54]  S. Kaplan,et al.  Paired-associate learning as a function of arousal and interpolated interval. , 1963, Journal of experimental psychology.

[55]  Rana El Kaliouby,et al.  Viewing Student Affect and Learning through Classroom Observation and Physical Sensors , 2008, Intelligent Tutoring Systems.

[56]  Kevin Knight,et al.  Artificial intelligence (2. ed.) , 1991 .

[57]  Wei-Yang Lin,et al.  Intrusion detection by machine learning: A review , 2009, Expert Syst. Appl..

[58]  P. Durlach The effects of a low dose of caffeine on cognitive performance , 1998, Psychopharmacology.

[59]  M. Chi Constructing Self-Explanations and Scaffolded Explanations in Tutoring , 1996 .

[60]  Arthur C. Graesser,et al.  Emotions and Learning with AutoTutor , 2007, AIED.

[61]  T. Griffiths,et al.  Modeling individual differences using Dirichlet processes , 2006 .

[62]  Claude Frasson,et al.  Managing Learner's Affective States in Intelligent Tutoring Systems , 2010, Advances in Intelligent Tutoring Systems.

[63]  Antonija Mitrovic,et al.  Evaluation of a Constraint-Based Tutor for a Database Language , 1999 .

[64]  Bart Baesens,et al.  Editorial survey: swarm intelligence for data mining , 2010, Machine Learning.

[65]  Jennifer J. Vogel-Walcutt,et al.  Using Neurophysiological Data to Inform Feedback Timing: A Pilot Study , 2011, HCI.

[66]  Cristina Conati,et al.  Bayesian Student Modeling , 2010, Advances in Intelligent Tutoring Systems.

[67]  H. Chad Lane,et al.  Intelligent Tutoring Goes to the Museum in the Big City: A Pedagogical Agent for Informal Science Education , 2011, AIED.

[68]  Star Muir,et al.  The Science of Learning and the Art of Teaching , 2015 .

[69]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[70]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[71]  Nicholas R. Jennings,et al.  On agent-based software engineering , 2000, Artif. Intell..

[72]  Neil T. Heffernan,et al.  Student Modeling in an Intelligent Tutoring System , 2011 .

[73]  Weili. Ong,et al.  Real time credit card fraud detection using computational intelligence , 2011 .

[74]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[75]  Rosemary Luckin,et al.  Modelling Human Teaching Tactics and Strategies for Tutoring Systems: 14 Years On , 2015, International Journal of Artificial Intelligence in Education.

[76]  B. Bloom The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring , 1984 .

[77]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[78]  Hugh L. Burns,et al.  Foundations of intelligent tutoring systems : an introduction , 1988 .

[79]  Vincent Aleven,et al.  Metacognitive Practice Makes Perfect: Improving Students' Self-Assessment Skills with an Intelligent Tutoring System , 2011, AIED.

[80]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[81]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[82]  Amy Soller,et al.  Supporting Social Interaction in an Intelligent Collaborative Learning System , 2001 .

[83]  Arthur C. Graesser,et al.  Teaching Tactics and Dialog in AutoTutor , 2001 .

[84]  Ryan Shaun Joazeiro de Baker,et al.  Coarse-grained detection of student frustration in an introductory programming course , 2009, ICER '09.

[85]  Gerhard Fischer,et al.  User Modeling in Human–Computer Interaction , 2001, User Modeling and User-Adapted Interaction.

[86]  Bob Dolan,et al.  Five Aspirations for Educational Data Mining , 2012, EDM.

[87]  Vincent Aleven,et al.  Towards Sensor-Free Affect Detection in Cognitive Tutor Algebra. , 2012, EDM 2012.

[88]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[89]  Daniel J. Barber,et al.  Distributed Logging and Synchronization of Physiological and Performance Measures to Support Adaptive Automation Strategies , 2011, HCI.

[90]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[91]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[92]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[93]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[94]  James C. Lester Affect, Learning, and Delight , 2011, ACII.

[95]  James C. Lester,et al.  Early Prediction of Student Frustration , 2007, ACII.

[96]  José García Rodríguez,et al.  Image Compression Using Growing Neural Gas , 2007, 2007 International Joint Conference on Neural Networks.

[97]  S. Hochstein,et al.  The role of attention in learning simple visual tasks , 2002 .

[98]  Rosalind W. Picard Building an Affective Learning Companion , 2006, Intelligent Tutoring Systems.

[99]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[100]  J. Medina Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School , 2008 .

[101]  Eyke Hüllermeier,et al.  Online clustering of parallel data streams , 2006, Data Knowl. Eng..

[102]  Ashraf M. Abdelbar,et al.  Approximating MAPs for Belief Networks is NP-Hard and Other Theorems , 1998, Artif. Intell..

[103]  Chris Berka,et al.  Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset , 2004, Int. J. Hum. Comput. Interact..

[104]  D Kahneman,et al.  Pupil Diameter and Load on Memory , 1966, Science.

[105]  Vera Demberg,et al.  The Index of Cognitive Activity as a Measure of Linguistic Processing , 2013, CogSci.

[106]  Kasia Muldner,et al.  Emotion Sensors Go To School , 2009, AIED.

[107]  Claude Frasson,et al.  Affect and Mental Engagement: Towards Adaptability for Intelligent , 2010, FLAIRS.

[108]  P. Suppes The Uses of Computers in Education. , 1966 .

[109]  Robert A. Sottilare,et al.  The Generalized Intelligent Framework for Tutoring (GIFT) , 2012 .

[110]  Arnon Hershkovitz,et al.  The Impact of Off-task and Gaming Behaviors on Learning: Immediate or Aggregate? , 2009, AIED.

[111]  Juan-Manuel Belda-Lois,et al.  EMG and GSR signals for evaluating user's perception of different types of ceramic flooring. , 2009 .

[112]  Tom Murray,et al.  Toward Measuring and Maintaining the Zone of Proximal Development in Adaptive Instructional Systems , 2002, Intelligent Tutoring Systems.

[113]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[114]  Vladimir Bostanov,et al.  BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram , 2004, IEEE Transactions on Biomedical Engineering.

[115]  Jürgen Schmidhuber,et al.  Learning dynamic algorithm portfolios , 2006, Annals of Mathematics and Artificial Intelligence.

[116]  Ajith Abraham,et al.  Intelligent and Interactive Web-Based Tutoring System in Engineering Education: Reviews, Perspectives and Development , 2010, Computational Intelligence for Technology Enhanced Learning.

[117]  Mark R. Lepper,et al.  The wisdom of practice: Lessons learned from the study of highly effective tutors. , 2002 .

[118]  Jennifer Healey,et al.  Recording Affect in the Field: Towards Methods and Metrics for Improving Ground Truth Labels , 2011, ACII.

[119]  Robert Sottilare Challenges in the development of intelligent tutors for adaptive military training systems , 2010 .

[120]  G. Bower How might emotions affect learning , 1992 .

[121]  Ann L. Brown,et al.  Reciprocal teaching of comprehension-monitoring activities , 1983 .

[122]  Zhengyou Zhang,et al.  Microsoft Kinect Sensor and Its Effect , 2012, IEEE Multim..

[123]  Avelino J. Gonzalez,et al.  Realtime Clustering of Unlabelled Sensory Data for Trainee State Assessment , 2011 .

[124]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[125]  Arnab Majumdar,et al.  Factors Affecting Air Traffic Controller Workload: Multivariate Analysis Based on Simulation Modeling of Controller Workload , 2002 .

[126]  Hyacinth S. Nwana,et al.  Intelligent tutoring systems: an overview , 1990, Artificial Intelligence Review.

[127]  Nicola Capuano,et al.  ABITS: An Agent Based Intelligent Tutoring System for Distance Learning , 2014 .

[128]  J. Hanley,et al.  A method of comparing the areas under receiver operating characteristic curves derived from the same cases. , 1983, Radiology.

[129]  Stephen Grossberg,et al.  ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network , 1991, [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering.

[130]  Nitesh V. Chawla,et al.  Noname manuscript No. (will be inserted by the editor) Learning from Streaming Data with Concept Drift and Imbalance: An Overview , 2022 .

[131]  B. Fredrickson What Good Are Positive Emotions? , 1998, Review of general psychology : journal of Division 1, of the American Psychological Association.

[132]  Zoran Budimac,et al.  E-Learning personalization based on hybrid recommendation strategy and learning style identification , 2011, Comput. Educ..

[133]  R. Korpela,et al.  Coffee, caffeine and blood pressure: a critical review , 1999, European Journal of Clinical Nutrition.

[134]  Mia Stern,et al.  Applications of AI in education , 1996, CROS.

[135]  Alain Bonnet,et al.  Artificial intelligence - promise and performance , 1986 .

[136]  Jeff Rickel,et al.  Intelligent computer-aided instruction: a survey organized around system components , 1989, IEEE Trans. Syst. Man Cybern..

[137]  Arthur C. Graesser,et al.  Moment-To-Moment Emotions During Reading , 2012 .

[138]  Geoff Hulten,et al.  Mining time-changing data streams , 2001, KDD '01.

[139]  John Seely Brown,et al.  A tutoring and student modelling paradigm for gaming environments , 1976, SIGCSE '76.

[140]  Javier Hernandez,et al.  Call Center Stress Recognition with Person-Specific Models , 2011, ACII.

[141]  S. P. Marshall,et al.  The Index of Cognitive Activity: measuring cognitive workload , 2002, Proceedings of the IEEE 7th Conference on Human Factors and Power Plants.

[142]  Ricardo Conejo,et al.  SIETTE: A Web-Based Tool for Adaptive Testing , 2004, Int. J. Artif. Intell. Educ..

[143]  Diane M. Tomasic,et al.  Meta-Analysis: A Comparison of Approaches , 2005 .

[144]  Johannes Hewig,et al.  A revised film set for the induction of basic emotions. , 2005 .

[145]  Peter Robinson,et al.  Multimodal Affect Recognition in Intelligent Tutoring Systems , 2011, ACII.

[146]  Rosalind W. Picard Measuring Affect in the Wild , 2011, ACII.

[147]  R. Slavin Evidence-Based Education Policies: Transforming Educational Practice and Research , 2002 .

[148]  John Langford,et al.  Agnostic Active Learning Without Constraints , 2010, NIPS.

[149]  Luisa M. Regueras,et al.  Is Adaptive Learning Effective? A Review of the Research , 2008 .

[150]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[151]  Emmanuel G. Blanchard,et al.  Affective Artificial Intelligence in Education: From Detection to Adaptation , 2009, AIED.

[152]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[153]  Stellan Ohlsson,et al.  Constraint-Based Student Modeling , 1994 .

[154]  Ashish Kapoor,et al.  Multimodal affect recognition in learning environments , 2005, ACM Multimedia.

[155]  Roger Nkambou,et al.  Towards Affective Intelligent Tutoring System , 2006 .

[156]  Siu Cheung Hui,et al.  Automatic summary assessment for intelligent tutoring systems , 2009, Comput. Educ..

[157]  Teik-Toe Teoh,et al.  Emotional prediction using time series multiple-regression genetic algorithm for autistic syndrome disorder , 2012, 2012 7th International Conference on Computer Science & Education (ICCSE).

[158]  Chris Berka,et al.  Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model , 2011, Biological Psychology.

[159]  Jonathan P. Rowe,et al.  Integrating Learning and Engagement in Narrative-Centered Learning Environments , 2010, Intelligent Tutoring Systems.

[160]  Arthur C. Graesser,et al.  Mind and Body: Dialogue and Posture for Affect Detection in Learning Environments , 2007, AIED.

[161]  Luca T. Mainardi,et al.  Online Detection of P300 and Error Potentials in a BCI Speller , 2010, Comput. Intell. Neurosci..

[162]  Emmanuel G. Blanchard,et al.  Towards Advanced Learner Modeling: Discussions on Quasi Real-time Adaptation with Physiological Data , 2007, Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007).

[163]  Ulf Ahlstrom,et al.  Using eye movement activity as a correlate of cognitive workload , 2006 .

[164]  John Langford,et al.  A reliable effective terascale linear learning system , 2011, J. Mach. Learn. Res..

[165]  Sanjoy Dasgupta,et al.  A General Agnostic Active Learning Algorithm , 2007, ISAIM.

[166]  Ryan Shaun Joazeiro de Baker,et al.  Comparing Learners' Affect While Using an Intelligent Tutoring System and a Simulation Problem Solving Game , 2008, Intelligent Tutoring Systems.

[167]  Cynthia D. Fisherl Boredom at Work: A Neglected Concept , 1993 .

[168]  A. Ennaji,et al.  An incremental growing neural gas learns topologies , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[169]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[170]  Ok-choon Park,et al.  Intelligent CAI: Old wine in new bottles, or a new vintage? , 1987 .

[171]  A. L. Baylor,et al.  A Social-Cognitive Framework for Pedagogical Agents as Learning Companions , 2006 .

[172]  Stephen Grossberg,et al.  Adaptive resonance theory: ART , 1998, An Introduction to Neural Networks.

[173]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[174]  David J. Weiss,et al.  APPLICATION OF COMPUTERIZED ADAPTIVE TESTING TO EDUCATIONAL PROBLEMS , 1984 .

[175]  Michelle N. Lumicao,et al.  EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. , 2007, Aviation, space, and environmental medicine.

[176]  Vincent Aleven,et al.  Intelligent Tutoring Goes To School in the Big City , 1997 .

[177]  G. Tononi,et al.  Sleep function and synaptic homeostasis. , 2006, Sleep medicine reviews.

[178]  P. Pintrich,et al.  Motivational and self-regulated learning components of classroom academic performance. , 1990 .

[179]  Santosh Mathan,et al.  Defense Advanced Research Projects Agency (DARPA) Improving Warfighter Information Intake under Stress: Augmented Cognition - Phases 2, 3, and 4 , 2008 .

[180]  Eugene Charniak,et al.  Bayesian Networks without Tears , 1991, AI Mag..

[181]  Willis J. Tompkins,et al.  A Real-Time QRS Detection Algorithm , 1985, IEEE Transactions on Biomedical Engineering.

[182]  Gert Pfurtscheller,et al.  Event-Related Synchronization and Desynchronization of Alpha and Beta Waves in a Cognitive Task , 1992 .

[183]  Jonathan P. Rowe,et al.  A framework for narrative adaptation in interactive story-based learning environments , 2010, FDG.

[184]  Rosalind W. Picard,et al.  Automated Posture Analysis for Detecting Learner's Interest Level , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[185]  M. Bradley,et al.  Remembering pictures: pleasure and arousal in memory. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[186]  Kasia Muldner,et al.  An analysis of students’ gaming behaviors in an intelligent tutoring system: predictors and impacts , 2011, User Modeling and User-Adapted Interaction.

[187]  Claude Frasson,et al.  Cognitive Priming: Assessing the Use of Non-conscious Perception to Enhance Learner's Reasoning Ability , 2012, ITS.

[188]  M. Coles Modern mind-brain reading: psychophysiology, physiology, and cognition. , 1989, Psychophysiology.

[189]  Barry H. Kantowitz,et al.  Mental Workload , 2020, Encyclopedia of Behavioral Medicine.

[190]  Albert T. Corbett,et al.  Cognitive Computer Tutors: Solving the Two-Sigma Problem , 2001, User Modeling.

[191]  Scotty D. Craig,et al.  Affect and learning: An exploratory look into the role of affect in learning with AutoTutor , 2004 .

[192]  M. Siepmann,et al.  Acute effects of caffeine on heart rate variability in habitual caffeine consumers , 2006, Clinical physiology and functional imaging.

[193]  Magali R. G. Meireles,et al.  A comprehensive review for industrial applicability of artificial neural networks , 2003, IEEE Trans. Ind. Electron..

[194]  Philipp Cimiano,et al.  Online Semi-Supervised Growing Neural Gas , 2012, Int. J. Neural Syst..

[195]  Joseph B. Cuseo The Empirical Case against Large Class Size: Adverse Effects on the Teaching, Learning, and Retention of First-Year Students. , 2007 .

[196]  J. Hartley,et al.  SOME LEARNING MODELS FOR ARITHMETIC TASKS AND THEIR USE IN COMPUTER BASED LEARNING , 1971 .

[197]  Matthew J. Streeter,et al.  Adaptive Bound Optimization for Online Convex Optimization , 2010, COLT 2010.

[198]  Seyed Hamid Reza Abbasi,et al.  Emotions States Recognition Based on Physiological Parameters by Employing of Fuzzy-Adaptive Resonance Theory , 2012 .

[199]  Sebastián Ventura,et al.  Educational data mining: A survey from 1995 to 2005 , 2007, Expert Syst. Appl..

[200]  Jeremiah Folsom-Kovarik,et al.  Leveraging Help Requests In Pomdp Intelligent Tutors , 2012 .

[201]  Frank M. Pajares,et al.  Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. , 1994 .

[202]  John Langford,et al.  Sparse Online Learning via Truncated Gradient , 2008, NIPS.

[203]  Claude Frasson,et al.  Exploring the Relationship between Learner EEG Mental Engagement and Affect , 2010, Intelligent Tutoring Systems.

[204]  Kalina Yacef,et al.  An Intelligent Teaching Assistant System for Logic , 2002, Intelligent Tutoring Systems.

[205]  G. Anderson,et al.  Real and laboratory gambling, sensation-seeking and arousal. , 1984, British journal of psychology.

[206]  Trude Heift,et al.  Corrective feedback and learner uptake in CALL , 2004, ReCALL.

[207]  Lewis Hassell,et al.  Affect and Trust , 2005, iTrust.

[208]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[209]  Sandeep Koranne,et al.  Artificial Intelligence and Optimization , 2011 .

[210]  Rafael A. Calvo,et al.  Affective Modeling from Multichannel Physiology: Analysis of Day Differences , 2011, ACII.

[211]  Lauren Reinerman-Jones,et al.  Developing Methods for Utilizing Physiological Measures , 2010 .

[212]  Ryan Shaun Joazeiro de Baker,et al.  Mining Data for Student Models , 2010, Advances in Intelligent Tutoring Systems.

[213]  Cristina Conati,et al.  Combining Cognitive Appraisal and Sensors for Affect Detection in a Framework for Modeling User Affect , 2011 .

[214]  Ronald H. Stevens,et al.  Towards the Development of Quantitative Descriptions of the Neurodynamic Rhythms and Organizations of Teams , 2013 .

[215]  E. Salas,et al.  Application of cognitive, skill-based, and affective theories of learning outcomes to new methods of training evaluation. , 1993 .

[216]  L. S. Vygotksy Mind in society: the development of higher psychological processes , 1978 .

[217]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[218]  Pat Langley,et al.  Learning, development, and production systems , 1987 .

[219]  Peter Brusilovsky,et al.  Web-Based Education for All: A Tool for Development Adaptive Courseware , 1998, Comput. Networks.

[220]  Kiran Mishra,et al.  An intelligent tutoring system for C++ , 2010, 2010 International Conference on Electronics and Information Engineering.

[221]  Arthur C. Graesser,et al.  AutoTutor: A simulation of a human tutor , 1999, Cognitive Systems Research.

[222]  Raja Parasuraman,et al.  Adaptive Automation for Human Supervision of Multiple Uninhabited Vehicles: Effects on Change Detection, Situation Awareness, and Mental Workload , 2009 .

[223]  Sourav S. Bhowmick,et al.  Research Issues in Web Data Mining , 1999, DaWaK.

[224]  J. R. Hartley,et al.  Towards more intelligent teaching systems , 1973 .

[225]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[226]  J. Hanley Receiver operating characteristic (ROC) methodology: the state of the art. , 1989, Critical reviews in diagnostic imaging.