A water vapor scaling model for improved land surface temperature and emissivity separation of MODIS thermal infrared data

[1]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[2]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[3]  D. Vidal-Madjar,et al.  Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data , 1986 .

[4]  F. Becker,et al.  The impact of spectral emissivity on the measurement of land surface temperature from a satellite , 1987 .

[5]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[6]  A. Kahle Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .

[7]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[8]  Z. Li,et al.  Temperature-independent spectral indices in thermal infrared bands , 1990 .

[9]  P. S. Kealy,et al.  A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies , 1992 .

[10]  José A. Sobrino,et al.  On the atmospheric dependence of the split-window equation for land surface temperature , 1994 .

[11]  J. Lloyd,et al.  On the temperature dependence of soil respiration , 1994 .

[12]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[13]  C. Francois,et al.  Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[15]  W. C. Snyder,et al.  Classification-based emissivity for land surface temperature measurement from space , 1998 .

[16]  Hideyuki Tonooka,et al.  An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor scaling method , 2001, IEEE Trans. Geosci. Remote. Sens..

[17]  Albert Rango,et al.  Temperature and emissivity separation from multispectral thermal infrared observations , 2002 .

[18]  Christopher O. Justice,et al.  Special issue on the moderate resolution imaging spectroradiometer (MODIS): a new generation of land surface monitoring , 2002 .

[19]  Kenta Ogawa,et al.  A sensitivity study of climate and energy balance simulations with use of satellite‐derived emissivity data over Northern Africa and the Arabian Peninsula , 2003 .

[20]  Z. Wan,et al.  Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA , 2004 .

[21]  James A. Gardner,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Asia-Pacific Remote Sensing.

[22]  Simon J. Hook,et al.  Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico , 2005 .

[23]  Hideyuki Tonooka,et al.  Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Jeffrey L. Privette,et al.  Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  T. Cudahy,et al.  Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia , 2005 .

[26]  W. Calvin,et al.  Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images , 2005 .

[27]  Hideyuki Tonooka,et al.  Atmospheric correction of MODIS thermal infrared bands by water vapor scaling method , 2005, SPIE Remote Sensing.

[28]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology , 2007 .

[29]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[30]  Kenta Ogawa,et al.  Estimating Broadband Emissivity of Arid Regions and Its Seasonal Variations Using Thermal Infrared Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Zhao-Liang Li,et al.  Radiance‐based validation of the V5 MODIS land‐surface temperature product , 2008 .

[32]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[33]  Simon J. Hook,et al.  Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites , 2009 .

[34]  G. Hulley,et al.  The North American ASTER Land Surface Emissivity Database (NAALSED) Version 2.0 , 2009 .

[35]  M. Matricardi Technical Note: An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data , 2009 .

[36]  Simon J. Hook,et al.  Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts , 2009 .

[37]  Simon J. Hook,et al.  Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia , 2009 .

[38]  Simon J. Hook,et al.  Land Surface Temperature From the Advanced Along-Track Scanning Radiometer: Validation Over Inland Waters and Vegetated Surfaces , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Shunlin Liang,et al.  Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites , 2009 .

[40]  Ben Bond-Lamberty,et al.  Temperature-associated increases in the global soil respiration record , 2010, Nature.

[41]  Martha C. Anderson,et al.  Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States , 2011 .

[42]  Simon J. Hook,et al.  Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Simon J. Hook,et al.  A radiance‐based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product , 2012 .

[44]  G. Hulley,et al.  Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data , 2012 .

[45]  G. Hulley,et al.  Moderate Resolution Imaging Spectroradiometer (MODIS) MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document , 2012 .

[46]  G. Hulley,et al.  Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21) , 2014 .

[47]  Simon J. Hook,et al.  The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth's emissivity at 100 meter spatial scale , 2015 .

[48]  Ryan Fraser,et al.  Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion , 2016, Scientific Reports.

[49]  Vicente Caselles,et al.  Test of the MODIS Land Surface Temperature and Emissivity Separation Algorithm With Ground Measurements Over a Rice Paddy , 2016, IEEE Transactions on Geoscience and Remote Sensing.