Wide consensus aggregation in the Wasserstein space. Application to location-scatter families
暂无分享,去创建一个
[1] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[2] P. Rousseeuw. Multivariate estimation with high breakdown point , 1985 .
[3] J. A. Cuesta,et al. The strong law of large numbers for k-means and best possible nets of Banach valued random variables , 1988 .
[4] J. A. Cuesta,et al. Notes on the Wasserstein Metric in Hilbert Spaces , 1989 .
[5] S. Rachev,et al. A characterization of random variables with minimum L 2 -distance , 1990 .
[6] M. Gelbrich. On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces , 1990 .
[7] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[8] A. Gordaliza. Best approximations to random variables based on trimming procedures , 1991 .
[9] J. A. Cuesta-Albertos,et al. Optimal coupling of multivariate distributions and stochastic processes , 1993 .
[10] M. Knott,et al. On a generalization of cyclic monotonicity and distances among random vectors , 1994 .
[11] David M. Rocke,et al. Computable Robust Estimation of Multivariate Location and Shape in High Dimension Using Compound Estimators , 1994 .
[12] J. A. Cuesta-Albertos,et al. On lower bounds for theL2-Wasserstein metric in a Hilbert space , 1996 .
[13] Christophe Croux,et al. An easy way to increase the finite-sample efficiency of the resampled minimum volume ellipsoid estimator , 1997 .
[14] C. Czado,et al. Nonparametric validation of similar distributions and assessment of goodness of fit , 1998 .
[15] Katrien van Driessen,et al. A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.
[16] C. Matrán,et al. A central limit theorem for multivariate generalized trimmed $k$-means , 1999 .
[17] P. Bühlmann,et al. Analyzing Bagging , 2001 .
[18] L. Rüschendorf,et al. On the n-Coupling Problem , 2002 .
[19] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[20] Carlos Matrán Bea,et al. Shape of a Distribution Through the L2-Wasserstein Distance , 2002 .
[21] C. Villani. Topics in Optimal Transportation , 2003 .
[22] P. Bühlmann. Bagging, subagging and bragging for improving some prediction algorithms , 2003 .
[23] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[24] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[25] Nicholas Ayache,et al. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..
[26] J. A. Cuesta-Albertos,et al. Trimming and likelihood: Robust location and dispersion estimation in the elliptical model , 2008, 0811.0503.
[27] C. Villani. Optimal Transport: Old and New , 2008 .
[28] J. A. Cuesta-Albertos,et al. Uniqueness and approximate computation of optimal incomplete transportation plans , 2011 .
[29] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[30] Thibaut Le Gouic,et al. Distribution's template estimate with Wasserstein metrics , 2011, 1111.5927.
[31] Brendan Pass. Optimal transportation with infinitely many marginals , 2012, 1206.5515.
[32] J. A. Cuesta-Albertos,et al. Similarity of samples and trimming , 2012, 1205.1950.
[33] Luis Angel García-Escudero,et al. tclust: An R Package for a Trimming Approach to Cluster Analysis , 2012 .
[34] Jérémie Bigot,et al. Consistent estimation of a population barycenter in the Wasserstein space , 2013 .
[35] V. Chernozhukov,et al. Monge-Kantorovich Depth, Quantiles, Ranks and Signs , 2014, 1412.8434.
[36] Adam M. Oberman,et al. NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS , 2014, 1411.3602.
[37] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[38] J. A. Cuesta-Albertos,et al. A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.
[39] Jean-Michel Loubes,et al. Barycenter in Wasserstein Spaces: Existence and Consistency , 2015, GSI.
[40] Thibaut Le Gouic,et al. Existence and consistency of Wasserstein barycenters , 2015, Probability Theory and Related Fields.
[41] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[42] Carlos Matrán,et al. Robust k-barycenters in Wasserstein Space and Wide Consensus Clustering , 2016 .
[43] Axel Munk,et al. Limit laws of the empirical Wasserstein distance: Gaussian distributions , 2015, J. Multivar. Anal..
[44] Peter Bühlmann,et al. Magging: Maximin Aggregation for Inhomogeneous Large-Scale Data , 2014, Proceedings of the IEEE.
[45] Juan Antonio Cuesta-Albertos,et al. Robust clustering tools based on optimal transportation , 2016, Statistics and Computing.