Factors critical for the plasticity of dendritic spines and memory storage

[1]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[3]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[4]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[5]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[6]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[7]  John E. Lisman,et al.  A Role of Actin Filament in Synaptic Transmission and Long-Term Potentiation , 1999, The Journal of Neuroscience.

[8]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[9]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[10]  M. Kano,et al.  Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression , 2000, Neuron.

[11]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[12]  S. Halpain,et al.  Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[14]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[15]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[16]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[17]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[18]  Rafael Yuste,et al.  Calcium Dynamics of Spines Depend on Their Dendritic Location , 2002, Neuron.

[19]  J. Fiala,et al.  Polyribosomes Redistribute from Dendritic Shafts into Spines with Enlarged Synapses during LTP in Developing Rat Hippocampal Slices , 2002, Neuron.

[20]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[21]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[22]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[23]  V. Murthy,et al.  Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons , 2002, Nature.

[24]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[25]  M. Schachner,et al.  Extracellular matrix molecules and synaptic plasticity , 2003, Nature Reviews Neuroscience.

[26]  J. Magee,et al.  Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons , 2003, The Journal of physiology.

[27]  K. Murai,et al.  Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling , 2003, Nature Neuroscience.

[28]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[29]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[30]  Rafael Yuste,et al.  Systematic regulation of spine sizes and densities in pyramidal neurons. , 2003, Journal of neurobiology.

[31]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature neuroscience.

[32]  Yasuhiko Ohta,et al.  Hippocampal LTP Is Accompanied by Enhanced F-Actin Content within the Dendritic Spine that Is Essential for Late LTP Maintenance In Vivo , 2003, Neuron.

[33]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[34]  Nobuko Mataga,et al.  Experience-Dependent Pruning of Dendritic Spines in Visual Cortex by Tissue Plasminogen Activator , 2004, Neuron.

[35]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[36]  R. Morris,et al.  Competing for Memory Hippocampal LTP under Regimes of Reduced Protein Synthesis , 2004, Neuron.

[37]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[38]  Mriganka Sur,et al.  Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation , 2004, Neuron.

[39]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[40]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[41]  Alcino J. Silva,et al.  The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory , 2004, Science.

[42]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[43]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[44]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[45]  E. Kandel,et al.  Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[47]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[48]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[49]  A. Erisir,et al.  VGluT2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex , 2005, The Journal of comparative neurology.

[50]  Alberto Diaspro,et al.  Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. , 2005, Biophysical journal.

[51]  J. Levinson,et al.  Building Excitatory and Inhibitory Synapses: Balancing Neuroligin Partnerships , 2005, Neuron.

[52]  Mary B. Kennedy,et al.  Integration of biochemical signalling in spines , 2005, Nature Reviews Neuroscience.

[53]  Andreas Lüthi,et al.  Dendritic Spine Heterogeneity Determines Afferent-Specific Hebbian Plasticity in the Amygdala , 2005, Neuron.

[54]  Richard L. Huganir,et al.  Activity-Dependent Dendritic Spine Structural Plasticity Is Regulated by Small GTPase Rap1 and Its Target AF-6 , 2005, Neuron.

[55]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[56]  R. Nicoll,et al.  Bidirectional Synaptic Plasticity Regulated by Phosphorylation of Stargazin-like TARPs , 2005, Neuron.

[57]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[58]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[59]  E. Schuman,et al.  Local translational control in dendrites and its role in long-term synaptic plasticity. , 2005, Journal of neurobiology.

[60]  Yi Zuo,et al.  Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex , 2005, Nature.

[61]  Kentaro Abe,et al.  Synaptic contact dynamics controlled by cadherin and catenins. , 2005, Trends in cell biology.

[62]  L. Abbott,et al.  Cascade Models of Synaptically Stored Memories , 2005, Neuron.

[63]  M. Segal Dendritic spines and long-term plasticity , 2005, Nature Reviews Neuroscience.

[64]  J. Kao,et al.  Long-term potentiation of exogenous glutamate responses at single dendritic spines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[66]  L. Jan,et al.  The distribution and targeting of neuronal voltage-gated ion channels , 2006, Nature Reviews Neuroscience.

[67]  Karel Svoboda,et al.  Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging , 2006, Nature Neuroscience.

[68]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[69]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.