Curves with prescribed symmetry and associated representations of mapping class groups

Let C be a complex smooth projective algebraic curve endowed with an action of a finite group G such that the quotient curve has genus at least 3. We prove that if the G-curve C is very general for these properties, then the natural map from the group algebra $${{\mathbb {Q}}}G$$ Q G to the algebra of $${{\mathbb {Q}}}$$ Q -endomorphisms of its Jacobian is an isomorphism. We use this to obtain (topological) properties regarding certain virtual linear representations of a mapping class group. For example, we show that the connected component of the Zariski closure of such a representation often acts $${{\mathbb {Q}}}$$ Q -irreducibly in a G-isogeny space of $$H^1(C; {{\mathbb {Q}}})$$ H 1 ( C ; Q ) and with image a $${{\mathbb {Q}}}$$ Q -almost simple group.

[1]  Angelo Vistoli,et al.  Deformation theory from the point of view of fibered categories , 2010, 1006.0497.

[2]  T. Venkataramana Monodromy of cyclic coverings of the projective line , 2012, 1204.4778.

[3]  I. Isaacs Character Theory of Finite Groups , 1976 .

[4]  C. Chevalley,et al.  Über das verhalten der integrale 1. gattung bei automorphismen des funktionenkörpers , 1934 .

[5]  S. Lefschetz A Theorem on Correspondences on Algebraic Curves , 1928 .

[6]  S. Maugeais,et al.  ON GALOIS ACTION ON STACK INERTIA OF MODULI SPACES OF CURVES , 2014, 1412.4644.

[7]  Masahiko Saito CLASSIFICATION OF NON-RIGID FAMILIES OF ABELIAN VARIETIES , 1993 .

[8]  H. Nagao,et al.  Representations of Finite Groups , 1989, Group Theory for Physicists.

[9]  C. Ciliberto Endomorfismi di jacobiane , 1989 .

[10]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[11]  H. Lange,et al.  Abelian varieties with group action , 2001, math/0106055.

[12]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[13]  E. Looijenga Prym Representations of Mapping Class Groups , 1997 .

[14]  P. Deligne Theorie de Hodge I , 1970 .

[15]  Andrew Putman,et al.  Abelian quotients of subgroups of the mapping class group and higher Prym representations , 2011, J. Lond. Math. Soc..

[16]  E. Looijenga,et al.  Deforming a canonical curve inside a quadric , 2017, 1702.00770.

[17]  Benjamin Collas,et al.  Composantes irr\'eductibles de lieux sp\'eciaux d'espaces de modules de courbes, action galoisienne en genre quelconque , 2014, 1403.2517.

[18]  Y. Andre Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part , 1992 .

[19]  A. Lubotzky,et al.  Arithmetic quotients of the mapping class group , 2013, 1307.2593.

[20]  Justin Malestein,et al.  Simple closed curves, finite covers of surfaces, and power subgroups of Out(Fn) , 2017, Duke Mathematical Journal.

[21]  P. Deligne,et al.  Théorie de Hodge, II , 1971 .

[22]  E. Looijenga Some algebraic geometry related to the mapping class group , 2015 .

[23]  T. Koberda,et al.  Quotients of surface groups and homology of finite covers via quantum representations , 2015, 1510.00677.

[24]  Hodge classes on certain hyperelliptic prymians , 2010, 1012.3731.