A trait-based framework to understand life history of mycorrhizal fungi.

Despite the growing appreciation for the functional diversity of arbuscular mycorrhizal (AM) fungi, our understanding of the causes and consequences of this diversity is still poor. In this opinion article, we review published data on AM fungal functional traits and attempt to identify major axes of life history variation. We propose that a life history classification system based on the grouping of functional traits, such as Grime's C-S-R (competitor, stress tolerator, ruderal) framework, can help to explain life history diversification in AM fungi, successional dynamics, and the spatial structure of AM fungal assemblages. Using a common life history classification framework for both plants and AM fungi could also help in predicting probable species associations in natural communities and increase our fundamental understanding of the interaction between land plants and AM fungi.

[1]  M. Hart,et al.  Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi , 2002 .

[2]  K. Winemiller Life history strategies, population regulation, and implications for fisheries management , 2005 .

[3]  I. Jakobsen,et al.  Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi , 1993 .

[4]  J. Bever,et al.  Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. , 2002, American journal of botany.

[5]  Jenny L. McCune,et al.  The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity , 2000 .

[6]  F. Oehl,et al.  Glomeromycota : two new classes and a new order , 2011 .

[7]  D. Tilman Constraints and tradeoffs: toward a predictive theory of competition and succession , 1990 .

[8]  David N. Reznick,et al.  r‐ AND K‐SELECTION REVISITED: THE ROLE OF POPULATION REGULATION IN LIFE‐HISTORY EVOLUTION , 2002 .

[9]  A. Watkinson,et al.  Multi-functionality and biodiversity in arbuscular mycorrhizas. , 1995, Trends in ecology & evolution.

[10]  E. Bonari,et al.  Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. , 2006, The New phytologist.

[11]  J. Klironomos,et al.  Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning , 2007, Science.

[12]  K. Treseder,et al.  Global diversity and distribution of arbuscular mycorrhizal fungi , 2011 .

[13]  E. Odum The strategy of ecosystem development. , 1969, Science.

[14]  A. Fitter,et al.  Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland , 1992 .

[15]  B. Cerabolini,et al.  The functional basis of a primary succession resolved by CSR classification , 2006 .

[16]  K. Rose,et al.  Patterns of Life-History Diversification in North American Fishes: implications for Population Regulation , 1992 .

[17]  J. Klironomos,et al.  Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth , 2012 .

[18]  M. Zobel,et al.  Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. , 2009, The New phytologist.

[19]  F. Oehl,et al.  Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps , 2011 .

[20]  J. Gemma,et al.  VESICULAR-ARBUSCULAR MYCORRHIZAE IN , 1990 .

[21]  M. Hart,et al.  Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying , 2001 .

[22]  M. Hart,et al.  Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum , 2002, Mycorrhiza.

[23]  Y. Shachar-Hill,et al.  Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. , 2005, The New phytologist.

[24]  M. Rillig,et al.  A new tool of the trade: plant-trait based approaches in microbial ecology , 2013, Plant and Soil.

[25]  J. Klironomos,et al.  Phylogenetic and Trait-Based Assembly of Arbuscular Mycorrhizal Fungal Communities , 2012, PloS one.

[26]  Roderick Hunt,et al.  Allocating C-S-R plant functional types : a soft approach to a hard problem , 1999 .

[27]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[28]  R. Leonard,et al.  ROOT EXUDATION IN RELATION TO SUPPLY OF PHOSPHORUS AND ITS POSSIBLE RELEVANCE TO MYCORRHIZAL FORMATION , 1978 .

[29]  D. Hodáňová Plant strategies and vegetation processes , 1981, Biologia Plantarum.

[30]  A. Fitter What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. , 2006, The New phytologist.

[31]  L. Abbott,et al.  Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH , 1987 .

[32]  F. L. Pfleger,et al.  Dynamics of vesicular-arbuscular mycorrhizae during old field succession , 1991, Oecologia.

[33]  J. Grace A clarification of the debate between Grime and Tilman , 1991 .

[34]  E. Paul,et al.  CARBON ECONOMY OF SOYBEAN-RHIZOBIUM-GLOMUS ASSOCIATIONS. , 1985, The New phytologist.

[35]  F. S. Chapin,et al.  The Mineral Nutrition of Wild Plants , 1980 .

[36]  A. Fitter Darkness visible: reflections on underground ecology , 2005 .

[37]  M. Rillig,et al.  Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi , 2009, Proceedings of the Royal Society B: Biological Sciences.

[38]  H. Vierheilig,et al.  Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. , 2003, The New phytologist.

[39]  H. Wallander,et al.  Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment , 2002 .

[40]  John G. Hodgson,et al.  The use of ecological theory and autecological datasets in studies of endangered plant and animal species and communities , 1991 .

[41]  Mark Westoby,et al.  Land-plant ecology on the basis of functional traits. , 2006, Trends in ecology & evolution.

[42]  M. J. Daft The influence of mixed inocula on endomycorrhizal development , 1983, Plant and Soil.

[43]  C. Ramsey,et al.  Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C , 2003, Science.

[44]  M. Vestberg,et al.  High functional diversity within species of arbuscular mycorrhizal fungi. , 2004, The New phytologist.

[45]  W. Ernst,et al.  The role of VA mycorrhiza in the heavy metal tolerance of Agrostis capillaris L. , 1990 .

[46]  V. Eviner,et al.  The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species , 2002, Plant and Soil.

[47]  K. Beard,et al.  Plant-soil feedbacks: a meta-analytical review. , 2008, Ecology letters.

[48]  C. Azcón-Aguilar,et al.  Unraveling mycorrhiza-induced resistance. , 2007, Current opinion in plant biology.

[49]  A. Heinemeyer,et al.  The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach , 2000 .

[50]  H. Gleason,et al.  The individualistic concept of the plant association , 1939 .

[51]  A. Heinemeyer,et al.  Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community , 2004 .

[52]  P. Reich,et al.  From tropics to tundra: global convergence in plant functioning. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Fitter,et al.  Co‐existing grass species have distinctive arbuscular mycorrhizal communities , 2003, Molecular ecology.

[54]  J. Dighton,et al.  Effects of Propagule Density and Survival Strategies on Establishment and Growth: Further Investigations in the Phylloplane Fungal Model System , 2007, Microbial Ecology.

[55]  S. West,et al.  Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis , 2011, Science.

[56]  D. Rowland,et al.  Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands , 2003 .

[57]  J. Klironomos,et al.  Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas , 2009 .

[58]  J. Klironomos,et al.  Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. , 2012, The New phytologist.

[59]  Michael F. Allen,et al.  IMPACTS OF EARLY- AND LATE-SERAL MYCORRHIZAE DURING RESTORATION IN SEASONAL TROPICAL FOREST, MEXICO , 2003 .

[60]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[61]  T. Roose,et al.  Traits related to differences in function among three arbuscular mycorrhizal fungi , 2011, Plant and Soil.

[62]  M. Hart,et al.  The role of the external mycelium in early colonization for three arbuscular mycorrhizal fungal species with different colonization strategies , 2005 .

[63]  D. Redecker,et al.  Glomalean fungi from the Ordovician. , 2000, Science.

[64]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[65]  D. Redecker,et al.  Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers , 2006, Mycologia.

[66]  D. Bellwood,et al.  Evaluating life-history strategies of reef corals from species traits. , 2012, Ecology letters.

[67]  S. Isayenkov,et al.  Jasmonates in arbuscular mycorrhizal interactions. , 2007, Phytochemistry.

[68]  Ian R. Sanders,et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity , 1998, Nature.

[69]  S. Declerck,et al.  Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. , 2004, The New phytologist.

[70]  A. Fitter,et al.  Ploughing up the wood-wide web? , 1998, Nature.

[71]  A. Bogenrieder,et al.  Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities , 2010 .

[72]  M. Tester,et al.  Phosphate inflow into Trifolium subterraneum L.: Effects of photon irradiance and mycorrhizal infection , 1985 .

[73]  M. Rillig,et al.  Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community , 2007, Mycorrhiza.

[74]  Sabine Ravnskov,et al.  Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant , 1995 .

[75]  M. V. D. Heijden Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland , 2004 .

[76]  M. Werger,et al.  Carbon cycling traits of plant species are linked with mycorrhizal strategy , 2001, Oecologia.

[77]  E. Garnier,et al.  Suites of plant traits in species from different stages of a Mediterranean secondary succession. , 2010, Plant biology.

[78]  R. J. Pool,et al.  Plant Succession. An Analysis of the Development of Vegetation , 1917 .

[79]  Christopher Walker,et al.  Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. , 2012, The New phytologist.

[80]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[81]  D. Tilman The Resource-Ratio Hypothesis of Plant Succession , 1985, The American Naturalist.

[82]  J. Sperry,et al.  Tansley Review , 2022 .

[83]  T. Anken,et al.  Diversity and structure of AMF communities as affected by tillage in a temperate soil , 2002, Mycorrhiza.

[84]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[85]  R. Brandl,et al.  Support from the underground: Induced plant resistance depends on arbuscular mycorrhizal fungi , 2010 .

[86]  J. Jansa,et al.  Phosphorus Acquisition Strategies within Arbuscular Mycorrhizal Fungal Community of a Single Field Site , 2005, Plant and Soil.

[87]  T. Boller,et al.  Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. , 2009 .

[88]  J. Morton Three new species of Acaulospora (Endogonaceae) from high aluminum, low pH soils in West Virginia , 1986 .

[89]  J. Klironomos,et al.  VARIATION IN PLANT RESPONSE TO NATIVE AND EXOTIC ARBUSCULAR MYCORRHIZAL FUNGI , 2003 .

[90]  L. Comas,et al.  Moving from pattern to process in fungal symbioses: linking functional traits, community ecology and phylogenetics. , 2010, New Phytologist.

[91]  T. Kuyper,et al.  Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. , 2005, The New phytologist.

[92]  P. Olsson,et al.  Fungal Lipid Accumulation and Development of Mycelial Structures by Two Arbuscular Mycorrhizal Fungi , 2003, Applied and Environmental Microbiology.

[93]  M. V. D. van der Heijden,et al.  Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. , 2007, The New phytologist.

[94]  D. Clarkson,et al.  The development and function of roots. , 1977 .