Accurate and Efficient Analysis of Printed Reflectarrays With Arbitrary Elements Using Higher-Order Hierarchical Legendre Basis Functions

It is demonstrated that nonsingular higher-order hierarchical Legendre basis functions are capable of accounting for the singularities of the electric currents at the edges of the reflectarray elements, thus yielding good convergence properties and very accurate results. In addition, the number of Floquet harmonics needed in the spectral domain method of moments is reduced by using higher-order hierarchical Legendre basis functions as compared to singular basis functions. At the same time, higher-order hierarchical Legendre basis functions can be applied to any arbitrarily shaped array elements, thus providing the flexibility required in the analysis of printed reflectarrays. A comparison to DTU-ESA Facility measurements of a reference offset reflectarray shows that higher-order hierarchical Legendre basis functions produce results of the same accuracy as those obtained using singular basis functions.

[1]  Renaud Loison,et al.  The Phoenix Cell: A New Reflectarray Cell With Large Bandwidth and Rebirth Capabilities , 2011, IEEE Antennas and Wireless Propagation Letters.

[2]  Raphael Gillard,et al.  A new reflectarray cell using microstrip patches loaded with slots , 2005 .

[3]  J. Huang,et al.  A C/ka dual frequency dual Layer circularly polarized reflectarray antenna with microstrip ring elements , 2004, IEEE Transactions on Antennas and Propagation.

[4]  Qing Huo Liu,et al.  Resonance frequency of a rectangular microstrip patch , 1988 .

[5]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[6]  Constantine A. Balanis,et al.  Analytical evaluation of the asymptotic impedance matrix of a grounded dielectric slab with roof-top functions , 1998 .

[7]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[8]  R. Mittra,et al.  Techniques for analyzing frequency selective surfaces-a review , 1988, Proc. IEEE.

[9]  M. R. Chaharmir,et al.  Design of Broadband, Single Layer Dual-Band Large Reflectarray Using Multi Open Loop Elements , 2010, IEEE Transactions on Antennas and Propagation.

[11]  E. Jorgensen,et al.  Higher order hierarchical Legendre basis functions for electromagnetic modeling , 2004, IEEE Transactions on Antennas and Propagation.

[12]  Paola Pirinoli,et al.  Broadband element for high-gain single-layer printed reflectarray antenna , 2007 .

[13]  D. Wilton,et al.  Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces , 1980 .

[14]  Khalil H. Sayidmarie,et al.  Investigations Into Phase Characteristics of a Single-Layer Reflectarray Employing Patch or Ring Elements of Variable Size , 2008, IEEE Transactions on Antennas and Propagation.

[15]  S. Rengarajan,et al.  Choice of basis functions for accurate characterization of infinite array of microstrip reflectarray elements , 2005, IEEE Antennas and Wireless Propagation Letters.

[16]  A. M. Lerer,et al.  Full-wave analysis of three-dimensional planar structures , 1993 .

[17]  F. Medina,et al.  New method for the efficient summation of double infinite series arising from the spectral domain analysis of frequency selective surfaces , 2004, IEEE Transactions on Antennas and Propagation.

[18]  Cecilia Cappellin,et al.  Diagnostics of the SMOS Radiometer Antenna System at the DTU-ESA Spherical Near-Field Antenna Test Facility , 2007 .

[19]  O. Breinbjerg,et al.  An Accurate Technique for Calculation of Radiation From Printed Reflectarrays , 2011, IEEE Antennas and Wireless Propagation Letters.