Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development

To improve our understanding of the role of phytoplankton for marine ecosystems and global biogeochemical cycles, information on the global distribution of major phytoplankton groups is essential. Although algorithms have been developed to assess phytoplankton diversity from space for over two decades, so far the application of these data sets has been limited. This scientific roadmap identifies user needs, summarizes the current state of the art, and pinpoints major gaps in long-term objectives to deliver space-derived phytoplankton diversity data that meets the user requirements. These major gaps in using ocean color to estimate phytoplankton community structure were identified as: (a) the mismatch between satellite, in situ and model data on phytoplankton composition, (b) the lack of quantitative uncertainty estimates provided with satellite data, (c) the spectral limitation of current sensors to enable the full exploitation of backscattered sunlight, and (d) the very limited applicability of satellite algorithms determining phytoplankton composition for regional, especially coastal or inland, waters. Recommendation for actions include but are not limited to: (i) an increased communication and round-robin exercises among and within the related expert groups, (ii) the launching of higher spectrally and spatially resolved sensors, (iii) the development of algorithms that exploit hyperspectral information, and of (iv) techniques to merge and synergistically use the various streams of continuous information on phytoplankton diversity from various satellite sensors' and in situ data to ensure long-term monitoring of phytoplankton composition.

[1]  E BairdMark,et al.  Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia , 2016 .

[2]  Annick Bricaud,et al.  Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water‐leaving radiances at SeaWiFS channels in a continental shelf region off Brazil , 2006 .

[3]  A. C. Lewis,et al.  Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol , 2008 .

[4]  Barbara J. Robson,et al.  Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data , 2016, Environ. Model. Softw..

[5]  M. Brzezinski,et al.  Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan , 2016, Front. Mar. Sci..

[6]  Jim Aiken,et al.  An absorption model to determine phytoplankton size classes from satellite ocean colour , 2008 .

[7]  C. Moulin,et al.  Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view , 2008 .

[8]  Toru Hirawake,et al.  Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region , 2011 .

[9]  Ibrahim Hoteit,et al.  Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea , 2015 .

[10]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[11]  S. Sathyendranath,et al.  The influence of the Indian Ocean Dipole on interannual variations in phytoplankton size structure as revealed by Earth Observation , 2012 .

[12]  Eric Karsenti,et al.  The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition , 2013 .

[13]  S. Maritorena,et al.  Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues , 2010 .

[14]  Mariana A. Soppa,et al.  Diatom Phenology in the Southern Ocean: Mean Patterns, Trends and the Role of Climate Oscillations , 2016, Remote. Sens..

[15]  Y. Yamanaka,et al.  Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects , 2017 .

[16]  Watson W. Gregg,et al.  Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model , 2015 .

[17]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[18]  Rüdiger Gerdes,et al.  Influence of the physical environment on polar phytoplankton blooms: A case study in the Fram Strait , 2014 .

[19]  Emanuele Organelli,et al.  Relationships between phytoplankton light absorption, pigment composition and size structure in offshore areas of the Mediterranean Sea , 2011 .

[20]  Robert J. W. Brewin,et al.  A Consumer's Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean , 2017, Front. Mar. Sci..

[21]  B. Franz,et al.  Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors , 2012 .

[22]  A. Bricaud,et al.  Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton , 1981 .

[23]  Annick Bricaud,et al.  Spatial‐temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009) , 2012 .

[24]  T. Platt,et al.  Variation in ocean colour may help predict cod and haddock recruitment , 2013 .

[25]  David A. Siegel,et al.  Retrieval of the particle size distribution from satellite ocean color observations , 2009 .

[26]  A. Kokhanovsky,et al.  Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN , 2014 .

[27]  Brenner Silva,et al.  Global Retrieval of Diatom Abundance Based on Phytoplankton Pigments and Satellite Data , 2014, Remote. Sens..

[28]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[29]  H. Claustre,et al.  Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll , 2006 .

[30]  Bo-Cai Gao,et al.  Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA , 2014, Remote. Sens..

[31]  Walker O. Smith,et al.  The MAREDAT global database of high performance liquid chromatography marine pigment measurements , 2012 .

[32]  T. Kostadinov,et al.  Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution , 2015 .

[33]  Cédric Jamet,et al.  Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: Application to the detection of phytoplankton groups in open ocean waters. , 2014 .

[34]  John J. Cullen,et al.  Optical detection and assessment of algal blooms , 1997 .

[35]  P. I. Miller,et al.  Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data. , 2014, Harmful algae.

[36]  Trevor Platt,et al.  A two‐component model of phytoplankton absorption in the open ocean: Theory and applications , 2006 .

[37]  Robert J. Olson,et al.  Automated taxonomic classification of phytoplankton sampled with imaging‐in‐flow cytometry , 2007 .

[38]  Bryan A. Franz,et al.  Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment , 2007, SPIE Optical Engineering + Applications.

[39]  Wonkook Kim,et al.  "Phytoplankton Composition from Space: towards a validation strategy for satellite algorithms" , 2015 .

[40]  S. Bernard,et al.  Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches. , 2014, Optics express.

[41]  C. Mouw,et al.  Phytoplankton size impact on export flux in the global ocean , 2016 .

[42]  Corinne Le Quéré,et al.  Rapid climatic driven shifts of diatoms at high latitudes , 2013 .

[43]  E. Atlas,et al.  Can simple models predict large-scale surface ocean isoprene concentrations? , 2016 .

[44]  A. Sadeghi,et al.  Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data , 2012 .

[45]  Natural Variability , 2017, Encyclopedia of GIS.

[46]  Y. Yamanaka,et al.  A comparison between phytoplankton community structures derived from a global 3D ecosystem model and satellite observation , 2013 .

[47]  Astrid Bracher,et al.  Phytoplankton functional types from Space. , 2014 .

[48]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[49]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[50]  D. Wolf-Gladrow,et al.  Environmental controls on N2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean - A model-based study , 2012 .

[51]  J. Burrows,et al.  Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data , 2008 .

[52]  A. Sadeghi,et al.  Biogeosciences Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyperspectral satellite data , 2011 .

[53]  Geir Johnsen,et al.  Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse‐amplitude‐modulated and fast‐repetition‐rate fluorometry 1 , 2007 .

[54]  D. Siegel,et al.  An improved bio‐optical model for the remote sensing of Trichodesmium spp. blooms , 2005 .

[55]  Watson W. Gregg,et al.  Modeling Coccolithophores in the Global Oceans , 2007 .

[56]  Stephanie Dutkiewicz,et al.  A size‐structured food‐web model for the global ocean , 2012 .

[57]  François-Marie Bréon,et al.  Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery , 2005 .

[58]  Zhongfeng Qiu,et al.  Hyperspectral Differentiation of Phytoplankton Taxonomic Groups: A Comparison between Using Remote Sensing Reflectance and Absorption Spectra , 2015, Remote. Sens..

[59]  Trevor Platt,et al.  The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data , 2013 .

[60]  Corinne Le Quéré,et al.  Phytoplankton competition during the spring bloom in four Plankton Functional Type Models , 2012 .

[61]  Richard C. Dugdale,et al.  One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle , 2002 .

[62]  Annick Bricaud,et al.  Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. , 2015, Applied optics.

[63]  Frédéric Mélin,et al.  Global-scale predictions of community and ecosystem properties from simple ecological theory , 2008, Proceedings of the Royal Society B: Biological Sciences.

[64]  P. J. Werdell,et al.  Discrimination of phytoplankton functional groups using an ocean reflectance inversion model. , 2014, Applied optics.

[65]  C. McClain A decade of satellite ocean color observations. , 2009, Annual review of marine science.

[66]  Trevor Platt,et al.  A three component classification of phytoplankton absorption spectra: Application to ocean-color data , 2011 .

[67]  Robert J. W. Brewin,et al.  Comparison of two methods to derive the size-structure of natural populations of phytoplankton , 2014 .

[68]  W Slade,et al.  Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols. , 2016, Optics express.

[69]  Annick Bricaud,et al.  Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site). , 2013, Applied optics.

[70]  P. C. Reid,et al.  Identifying four phytoplankton functional types from space: An ecological approach , 2008 .

[71]  S. Sathyendranath,et al.  A three-component model of phytoplankton size class for the Atlantic Ocean , 2010 .

[72]  Robert J. W. Brewin,et al.  Influence of light in the mixed-layer on the parameters of a three-component model of phytoplankton size class , 2015 .

[73]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.

[74]  Y. Yamanaka,et al.  Synoptic relationships between surface Chlorophyll- a and diagnostic pigments specific to phytoplankton functional types , 2011 .

[75]  A. Sadeghi,et al.  Remote sensing of coccolithophore blooms in selected oceanic regions using PhytoDOAS method applied to hyper-spectral satellite data. , 2011 .

[76]  Annick Bricaud,et al.  Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations , 2004 .

[77]  Rüdiger Röttgers,et al.  Using empirical orthogonal functions derived from remote-sensing reflectance for the prediction of phytoplankton pigment concentrations , 2015 .

[78]  S. Doney,et al.  The distribution, dominance patterns and ecological niches of plankton functional types in Dynamic Green Ocean Models and satellite estimates , 2013 .

[79]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[80]  Nicolas Hoepffner,et al.  Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter , 1993 .

[81]  Watson W. Gregg,et al.  Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model , 2013 .

[82]  T. Moisan,et al.  Algorithm development for predicting biodiversity based on phytoplankton absorption , 2013 .

[83]  Raphael M. Kudela,et al.  Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters , 2015 .

[84]  Annick Bricaud,et al.  Decomposition of in situ particulate absorption spectra , 2013 .

[85]  Mark R. Miller,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols , 2003 .

[86]  Lin Li,et al.  Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data , 2013 .

[87]  H. Bouman,et al.  Oceanographic Basis of the Global Surface Distribution of Prochlorococcus Ecotypes , 2006, Science.

[88]  E. Carpenter,et al.  Detecting Trichodesmium blooms in SeaWiFS imagery , 2001 .

[89]  P. Ruardij,et al.  The European regional seas ecosystem model, a complex marine ecosystem model , 1995 .

[90]  A. Bricaud,et al.  An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing , 2011 .

[91]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[92]  A. Bricaud,et al.  Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and Earth System Models , 2017 .

[93]  Aleksandra Wolanin,et al.  Investigation of Spectral Band Requirements for Improving Retrievals of Phytoplankton Functional Types , 2016, Remote. Sens..

[94]  Corinne Le Quéré,et al.  Drivers and uncertainties of future global marine primary production in marine ecosystem models , 2015 .

[95]  Masahiko Fujii,et al.  The Value of Adding Optics to Ecosystem Models: A Case Study , 2007 .

[96]  R. Doerffer,et al.  Accurate estimation of the backscattering coefficient by light scattering at two backward angles. , 2015, Applied optics.

[97]  C. Mouw,et al.  Optical determination of phytoplankton size composition from global SeaWiFS imagery , 2010 .