On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison
暂无分享,去创建一个
[1] Nicholas C. Wormald,et al. Reconstruction of Rooted Trees From Subtrees , 1996, Discret. Appl. Math..
[2] K. Nixon. The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis , 1999 .
[3] M. Rezapour. On the construction of nested Archimedean copulas for d-monotone generators , 2015 .
[4] Jeffrey Sheen,et al. Conditional Systemic Risk with Penalized Copula , 2015 .
[5] Johan Segers,et al. Nonparametric estimation of the tree structure of a nested Archimedean copula , 2013, Comput. Stat. Data Anal..
[6] O. Bininda-Emonds,et al. The evolution of supertrees. , 2004, Trends in ecology & evolution.
[7] Martin Holena,et al. Using Copulas in Data Mining Based on the Observational Calculus , 2015, IEEE Transactions on Knowledge and Data Engineering.
[8] Oliver Eulenstein,et al. The shape of supertrees to come: tree shape related properties of fourteen supertree methods. , 2005, Systematic biology.
[9] Pablo N. Hess,et al. An empirical test of the midpoint rooting method , 2007, Biological journal of the Linnean Society. Linnean Society of London.
[10] Ostap Okhrin,et al. Hierarchical Archimedean Copulae: The HAC Package , 2012 .
[11] Yarema Okhrin,et al. On the structure and estimation of hierarchical Archimedean copulas , 2013 .
[12] N. Saitou,et al. The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.
[13] Stefano Ferilli. A sentence structure-based approach to unsupervised author identification , 2014, Journal of Intelligent Information Systems.
[14] F J Ayala,et al. Tree rooting with outgroups when they differ in their nucleotide composition from the ingroup: the Drosophila saltans and willistoni groups, a case study. , 2000, Molecular phylogenetics and evolution.
[15] W. Hoeffding. A Non-Parametric Test of Independence , 1948 .
[16] Yarema Okhrin,et al. Properties of hierarchical Archimedean copulas , 2013 .
[17] A. McNeil. Sampling nested Archimedean copulas , 2008 .
[18] R. Tibshirani,et al. Regularisation Paths for Conditional Logistic Regression: the clogitL1 package , 2014, 1405.3344.
[19] P. Filzmoser,et al. Robust Maximum Association Estimators , 2017 .
[20] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[21] Marius Hofert,et al. Densities of nested Archimedean copulas , 2012, J. Multivar. Anal..
[22] Marius Hofert,et al. Nested Archimedean Copulas Meet R: The nacopula Package , 2011 .
[23] Liam J. Revell,et al. phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .
[24] Martin Holena,et al. An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification , 2016, Journal of Intelligent Information Systems.
[25] H. Joe. Multivariate models and dependence concepts , 1998 .
[26] Ward C. Wheeler,et al. NUCLEIC ACID SEQUENCE PHYLOGENY AND RANDOM OUTGROUPS , 1990, Cladistics : the international journal of the Willi Hennig Society.
[27] Marius Hofert,et al. Efficiently sampling nested Archimedean copulas , 2011, Comput. Stat. Data Anal..
[28] Tandy Warnow,et al. SuperFine: fast and accurate supertree estimation. , 2012, Systematic biology.