A critical evaluation of EA computational methods for Photovoltaic cell parameter extraction based on two diode model

Due to its ability to handle nonlinear functions regardless of the derivatives information, evolutionary algorithms (EA) are envisaged to be very effective for extracting parameter of photovoltaic (PV) cell. This paper presents critical evaluation of the parameters extraction of two diode PV model using three EA methods, namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE). For DE, two variations are proposed: (1) boundary based differential evolution (B-DE) and (2) penalty based differential evolution (P-DE). The performance of each method is evaluated based on several factors: accuracy and consistency of solution; speed of convergence; computational efficiency and the required number of control parameters. Comparisons are carried out using synthetic data and are validated by six PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. Information derived from these critical evaluations can be useful to determine the best computational method to build an efficient and accurate PV system simulator.

[1]  M. Chegaar,et al.  Extracting dc parameters of solar cells under illumination , 2004 .

[2]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[3]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[4]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[5]  N. Moldovan,et al.  Parameter Extraction of a Solar Cell Compact Model usign Genetic Algorithms , 2009, 2009 Spanish Conference on Electron Devices.

[6]  M. Belhamel,et al.  Extraction and analysis of solar cell parameters from the illuminated current–voltage curve , 2005 .

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[8]  Tomoaki Ikegami,et al.  Modeling and operation of a 10 kW photovoltaic power generator using equivalent electric circuit method , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[9]  Geoffrey R. Walker,et al.  Evaluating MPPT Converter Topologies Using a Matlab PV Model , 2000 .

[10]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[11]  Mau-Phon Houng,et al.  Physical parameters extraction from current-voltage characteristic for diodes using multiple nonlinear regression analysis , 2008 .

[12]  Domingos S. L. Simonetti,et al.  Identification of photovoltaic model parameters by Differential Evolution , 2010, 2010 IEEE International Conference on Industrial Technology.

[13]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[14]  Kashif Ishaque,et al.  Simple, fast and accurate two-diode model for photovoltaic modules , 2011 .

[15]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[16]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[17]  Syafaruddin,et al.  A novel Maximum Power Point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using Differential Evolution , 2010, 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA).

[18]  P. Mialhe,et al.  Consistency of the double exponential model with physical mechanisms of conduction for a solar cell under illumination , 1985 .

[19]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[20]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[21]  Huanwen Tang,et al.  An improved simulated annealing for solving the linear constrained optimization problems , 2006, Appl. Math. Comput..

[22]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[23]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[24]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  Robert G. Reynolds,et al.  Proceedings of the 6th International Conference on Evolutionary Programming VI , 1997 .

[27]  Anup Kumar,et al.  Robust and distributed genetic algorithm for ordering problems , 1996, Proceedings of 5th IEEE International Symposium on High Performance Distributed Computing.

[28]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[29]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[30]  David Infield,et al.  The influence of the measurement environment on the accuracy of the extraction of the physical parameters of solar cells , 1999 .

[31]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .