Multiplexed analysis of molecular and elemental ions using nanowire transistor sensors

[1]  Shi-Li Zhang,et al.  Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions , 2017, Scientific Reports.

[2]  Jie Hao,et al.  In Vivo Analysis with Electrochemical Sensors and Biosensors. , 2017, Analytical chemistry.

[3]  Shana O Kelley,et al.  Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. , 2016, Chemical reviews.

[4]  R. Stoop,et al.  Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection , 2016, Biosensors.

[5]  Zhenqiang Wang,et al.  Designing structurally tunable and functionally versatile synthetic supercontainers , 2016 .

[6]  Sam Emaminejad,et al.  Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis , 2016, Nature.

[7]  R. Stoop,et al.  Competing surface reactions limiting the performance of ion-sensitive field-effect transistors , 2015 .

[8]  Pawan Kumar,et al.  Metal organic frameworks for sensing applications , 2015 .

[9]  J. Narang,et al.  Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles. , 2015, The Analyst.

[10]  Chaoyang Jiang,et al.  pH-modulated molecular assemblies and surface properties of metal-organic supercontainers at the air-water interface. , 2014, Angewandte Chemie.

[11]  Zhenqiang Wang,et al.  Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior. , 2014, Journal of the American Chemical Society.

[12]  Zhenqiang Wang,et al.  Modulating guest binding in sulfonylcalixarene-based metal-organic supercontainers. , 2014, Chemical communications.

[13]  Michel Calame,et al.  Selective sodium sensing with gold-coated silicon nanowire field-effect transistors in a differential setup. , 2013, ACS nano.

[14]  Jurriaan Huskens,et al.  Regenerative electronic biosensors using supramolecular approaches. , 2013, ACS nano.

[15]  Shi-Li Zhang,et al.  A graphene field-effect capacitor sensor in electrolyte , 2012 .

[16]  Zhenqiang Wang,et al.  Modular assembly of metal-organic supercontainers incorporating sulfonylcalixarenes. , 2012, Journal of the American Chemical Society.

[17]  R. Potts,et al.  Correlation between sweat glucose and blood glucose in subjects with diabetes. , 2012, Diabetes technology & therapeutics.

[18]  Philippe Bühlmann,et al.  Ion‐Selective Electrodes With Ionophore‐Doped Sensing Membranes , 2012 .

[19]  David E. Williams,et al.  Point of care diagnostics: status and future. , 2012, Analytical chemistry.

[20]  Shi-Li Zhang,et al.  Contacting versus insulated gate electrode for Si nanoribbon field-effect sensors operating in electrolyte. , 2011, Analytical chemistry.

[21]  T. Arendt,et al.  The cholinergic system in aging and neuronal degeneration , 2011, Behavioural Brain Research.

[22]  John Spertus,et al.  Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. , 2009, Clinical chemistry.

[23]  Alex Rhee,et al.  Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. , 2007, Nano letters.

[24]  R. Kostiainen,et al.  Analysis of acetylcholine and choline in microdialysis samples by liquid chromatography/tandem mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.

[25]  T. Armbruster,et al.  Cationic methylene blue incorporated into zeolite mordenite-Na: a single crystal X-ray study , 2005 .

[26]  M. Bergeron,et al.  Heat cramps: fluid and electrolyte challenges during tennis in the heat. , 2003, Journal of science and medicine in sport.

[27]  S. Marzouk,et al.  Methylene blue potentiometric sensor for selective determination of sulfide ions , 2002 .

[28]  D L Bader,et al.  Establishing predictive indicators for the status of loaded soft tissues. , 2001, Journal of applied physiology.

[29]  T D Noakes,et al.  Exercise-associated hyponatremia: a review. , 2001, Emergency medicine.

[30]  C. Groussard,et al.  Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. , 2000, Journal of applied physiology.

[31]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[32]  D. Reinhoudt,et al.  Effects of anionic sites on the selectivity of sodium-sensitive CHEMFETs , 1993 .

[33]  T. Patterson,et al.  Simultaneous quantitation of arecoline, acetylcholine, and choline in tissue using gas chromatography/electron impact mass spectrometry. , 1992, Biological mass spectrometry.

[34]  D. Reinhoudt,et al.  Chemically modified field-effect transistors; a sodium ion selective sensor based on calix[4]arene receptor molecules , 1991 .

[35]  W. Simon,et al.  Neutral carrier-based Na+-selective electrode for application in blood serum , 1986 .

[36]  A. Devlin,et al.  Methyl nutrients, DNA methylation, and cardiovascular disease. , 2014, Molecular nutrition & food research.

[37]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[38]  C. Y. Wang,et al.  Potentiometric sensor for methylene blue based on methylene blue-silicotungstate ion association and its pharmaceutical applications. , 1999, Journal of pharmaceutical and biomedical analysis.