Visual gravitational motion and the vestibular system in humans

The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

[1]  F. Mast,et al.  The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis , 2012, Neuroscience.

[2]  F. Lacquaniti,et al.  The role of preparation in tuning anticipatory and reflex responses during catching , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Peter M. Vishton,et al.  Timing of anticipatory muscle tensing control: responses before and after expected impact , 2010, Experimental Brain Research.

[4]  O. Blanke,et al.  The thalamocortical vestibular system in animals and humans , 2011, Brain Research Reviews.

[5]  Alain Berthoz,et al.  Cortical Dynamics of Anticipatory Mechanisms in Interception: A Neuromagnetic Study , 2008, Journal of Cognitive Neuroscience.

[6]  F. Lacquaniti,et al.  Anticipatory and reflex coactivation of antagonist muscles in catching , 1987, Brain Research.

[7]  Vincenzo Maffei,et al.  Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths , 2013, Experimental Brain Research.

[8]  A. Georgopoulos,et al.  Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. , 2004, Cerebral cortex.

[9]  Dora E Angelaki,et al.  Macaque Parieto-Insular Vestibular Cortex: Responses to Self-Motion and Optic Flow , 2010, Journal of Neuroscience.

[10]  Yoshiharu Sakata,et al.  The Vestibular Cortex , 2002 .

[11]  A. M. Burden,et al.  The role of predictive visual temporal information in the coordination of muscle activity in catching , 2004, Experimental Brain Research.

[12]  S. McKee,et al.  Precise velocity discrimination despite random variations in temporal frequency and contrast , 1986, Vision Research.

[13]  John B. Pittenger,et al.  Detection of Violations of the Law of Pendulum Motion: Observers' Sensitivity to the Relation Between Period and Length , 1990 .

[14]  M. Grealy,et al.  Judging Time Intervals Using a Model of Perceptuo-Motor Control , 2004, Journal of Cognitive Neuroscience.

[15]  T. Hubbard,et al.  Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force , 1995, Psychonomic bulletin & review.

[16]  Francesco Lacquaniti,et al.  When Up Is Down in 0g: How Gravity Sensing Affects the Timing of Interceptive Actions , 2012, The Journal of Neuroscience.

[17]  Velia Cardin,et al.  Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. , 2010, Cerebral cortex.

[18]  Joost C. Dessing,et al.  Adaptations of lateral hand movements to early and late visual occlusion in catching , 2009, Experimental Brain Research.

[19]  J. Tresilian Visually timed action: time-out for ‘tau’? , 1999, Trends in Cognitive Sciences.

[20]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[21]  E. Brenner,et al.  Fast Responses of the Human Hand to Changes in Target Position. , 1997, Journal of motor behavior.

[22]  Stephen J Heinen,et al.  Perceptual and oculomotor evidence of limitations on processing accelerating motion. , 2003, Journal of vision.

[23]  Bart Funnekotter Oxford Oxford University , 2005 .

[24]  Joan López-Moliner,et al.  Determining whether a ball will land behind or in front of you: Not just a combination of expansion and angular velocity , 2006, Vision Research.

[25]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[27]  Lutz Jäncke,et al.  Feeling Present in Arousing Virtual Reality Worlds: Prefrontal Brain Regions Differentially Orchestrate Presence Experience in Adults and Children , 2008, Frontiers in human neuroscience.

[28]  Nikolaus F Troje,et al.  Reference Frames for Orientation Anisotropies in Face Recognition and Biological-Motion Perception , 2003, Perception.

[29]  H. Krist,et al.  When is the ball going to hit the ground? Duration estimates, eye movements, and mental imagery of object motion. , 2004, Journal of experimental psychology. Human perception and performance.

[30]  John P. Wann,et al.  Perceiving Time to Collision Activates the Sensorimotor Cortex , 2005, Current Biology.

[31]  F. Lacquaniti,et al.  Cognitive, perceptual and action-oriented representations of falling objects , 2005, Neuropsychologia.

[32]  C. Frith,et al.  Cerebral representations for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration , 2001, NeuroImage.

[33]  A. Berthoz,et al.  Weightlessness alters up/down asymmetries in the perception of self-motion , 2013, Experimental Brain Research.

[34]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[35]  P. Werkhoven,et al.  Visual processing of optic acceleration , 1992, Vision Research.

[36]  Guy A. Orban,et al.  Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI , 2003, Neuropsychologia.

[37]  Hartwig K. Distler,et al.  Velocity Constancy in a Virtual Reality Environment , 1997, Perception.

[38]  Barbara La Scaleia,et al.  Observing human movements helps decoding environmental forces , 2011, Experimental Brain Research.

[39]  Christian Darlot,et al.  Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements , 2002, Biological Cybernetics.

[40]  Lionel Carmant,et al.  Revisiting the role of the insula in refractory partial epilepsy , 2009, Epilepsia.

[41]  O. Grüsser,et al.  Is there a vestibular cortex? , 1998, Trends in Neurosciences.

[42]  T. Brandt,et al.  Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). , 2001, Journal of neurophysiology.

[43]  Heiko Hecht,et al.  The Effect of Body Posture on Long-Range Time-to-Contact Estimation , 2011, Perception.

[44]  D. Regan,et al.  Visually guided collision avoidance and collision achievement , 2000, Trends in Cognitive Sciences.

[45]  H. Krist,et al.  Task-Specific Knowledge of the Law of Pendulum Motion in Children and Adults , 2005 .

[46]  O. Blanke,et al.  Neuropsychology: Stimulating illusory own-body perceptions , 2002, Nature.

[47]  F. Lacquaniti,et al.  Representation of Visual Gravitational Motion in the Human Vestibular Cortex , 2005, Science.

[48]  Francesco Lacquaniti,et al.  Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues. , 2005, Journal of neurophysiology.

[49]  Joseph McIntyre,et al.  Egocentric and allocentric reference frames for catching a falling object , 2010, Experimental Brain Research.

[50]  Laurence R Harris,et al.  Shape-from-Shading Depends on Visual, Gravitational, and Body-Orientation Cues , 2004, Perception.

[51]  Dora E Angelaki,et al.  Convergence of Vestibular and Visual Self-Motion Signals in an Area of the Posterior Sylvian Fissure , 2011, The Journal of Neuroscience.

[52]  Dorita H. F. Chang,et al.  Frames of reference for biological motion and face perception. , 2010, Journal of vision.

[53]  Mary Hayhoe,et al.  Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task. , 2013, Journal of vision.

[54]  Guy Orban,et al.  Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study. , 2010, Journal of neurophysiology.

[55]  Daniel M Merfeld,et al.  Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation. , 2005, Journal of neurophysiology.

[56]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[57]  W P Medendorp,et al.  Shared computational mechanism for tilt compensation accounts for biased verticality percepts in motion and pattern vision. , 2008, Journal of neurophysiology.

[58]  Vincenzo Maffei,et al.  Simulated Self-motion in a Visual Gravity Field: Sensitivity to Vertical and Horizontal , 2022 .

[59]  G. Orban,et al.  Human velocity and direction discrimination measured with random dot patterns , 1988, Vision Research.

[60]  T. Brandt,et al.  The Vestibular Cortex: Its Locations, Functions, and Disorders , 1999, Annals of the New York Academy of Sciences.

[61]  P. Baudonniere,et al.  Vestibular Projections in the Human Cortex , 1999, Annals of the New York Academy of Sciences.

[62]  François Mauguière,et al.  Clinical Manifestations of Insular Lobe Seizures: A Stereo‐electroencephalographic Study , 2004 .

[63]  Vincenzo Maffei,et al.  Vestibular nuclei and cerebellum put visual gravitational motion in context. , 2008, Journal of neurophysiology.

[64]  Heinrich H. Bülthoff,et al.  A Bayesian model of the disambiguation of gravitoinertial force by visual cues , 2007, Experimental Brain Research.

[65]  M. Benarie Visual processing , 1995, Nature.

[66]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[67]  G. Taga,et al.  Frame of reference for visual perception in young infants during change of body position , 2007, Experimental Brain Research.

[68]  T. Brandt,et al.  Dominance for vestibular cortical function in the non-dominant hemisphere. , 2003, Cerebral cortex.

[69]  J. V. Van Gisbergen,et al.  Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. , 2000, Journal of neurophysiology.

[70]  Francesco Lacquaniti,et al.  Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions. , 2011, Journal of vision.

[71]  A. Antal,et al.  The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion , 2008, Visual Neuroscience.

[72]  F. Lacquaniti,et al.  Internal models and prediction of visual gravitational motion , 2008, Vision Research.

[73]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[74]  F. Lacquaniti,et al.  The weight of time: gravitational force enhances discrimination of visual motion duration. , 2011, Journal of Vision.

[75]  X. M. Sauvan,et al.  Orientation Constancy in Neurons of Monkey Visual Cortex , 1999 .

[76]  M K Kaiser,et al.  Visual acceleration detection: Effect of sign and motion orientation , 1989, Perception & psychophysics.

[77]  Heiko Hecht,et al.  The representational dynamics of remembered projectile locations. , 2013, Journal of experimental psychology. Human perception and performance.

[78]  P. Baudonniere,et al.  Vestibular projections in the human cortex , 2001, Experimental Brain Research.

[79]  Francesco Lacquaniti,et al.  Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories , 2012, PloS one.

[80]  Joan López-Moliner,et al.  Synergies between optical and physical variables in intercepting parabolic targets , 2013, Front. Behav. Neurosci..

[81]  G. DeAngelis,et al.  Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex , 2011, The Journal of Neuroscience.

[82]  F. Lacquaniti,et al.  Visual perception and interception of falling objects: a review of evidence for an internal model of gravity , 2005, Journal of neural engineering.

[83]  F. Lacquaniti,et al.  Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning. , 2005, Journal of neurophysiology.

[84]  Hiromu Katsumata,et al.  Prospective versus predictive control in timing of hitting a falling ball , 2011, Experimental Brain Research.

[85]  Francesco Lacquaniti,et al.  The role of vision in tuning anticipatory motor responses of the limbs , 1993 .

[86]  Tarek A. Yousry,et al.  fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation , 2002, Experimental Brain Research.

[87]  F. Mauguière,et al.  Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study , 2008, Clinical Neurophysiology.

[88]  Richard S. J. Frackowiak,et al.  Cerebral representations for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration , 2001, NeuroImage.

[89]  Francesco Lacquaniti,et al.  Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth. , 2005, Journal of neurophysiology.

[90]  Kikuro Fukushima,et al.  Corticovestibular interactions: anatomy, electrophysiology, and functional considerations , 1997, Experimental Brain Research.

[91]  Romi Nijhawan,et al.  Visual prediction: Psychophysics and neurophysiology of compensation for time delays , 2008, Behavioral and Brain Sciences.

[92]  David N. Lee,et al.  A Theory of Visual Control of Braking Based on Information about Time-to-Collision , 1976, Perception.

[93]  D M Merfeld,et al.  Humans use internal models to estimate gravity and linear acceleration , 1999, Nature.

[94]  Bart Krekelberg,et al.  Perception of direction is not compensated for neural latency , 2008, Behavioral and Brain Sciences.

[95]  D Regan,et al.  Visual factors in hitting and catching. , 1997, Journal of sports sciences.

[96]  Richard S. Frackowiak,et al.  Neural Correlates of Visual-Motion Perception as Object- or Self-motion , 2002, NeuroImage.

[97]  F. Lacquaniti,et al.  Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. , 2004, Journal of neurophysiology.

[98]  Simon B. Eickhoff,et al.  Meta-analytical definition and functional connectivity of the human vestibular cortex , 2012, NeuroImage.

[99]  M. Dieterich,et al.  Insular Strokes Cause No Vestibular Deficits , 2013, Stroke.

[100]  A. D. Van Beuzekom,et al.  Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. , 2000 .

[101]  S. Bennett,et al.  Is Acceleration Used for Ocular Pursuit and Spatial Estimation during Prediction Motion? , 2013, PloS one.

[102]  K. Thilo,et al.  Vestibular inputs to human motion-sensitive visual cortex. , 2012, Cerebral cortex.

[103]  Vincenzo Maffei,et al.  Extrapolation of vertical target motion through a brief visual occlusion , 2010, Experimental Brain Research.

[104]  W. H. Warren The dynamics of perception and action. , 2006, Psychological review.

[105]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[106]  F. Lacquaniti,et al.  Does the brain model Newton's laws? , 2001, Nature Neuroscience.

[107]  Alain Berthoz,et al.  The perception of visually presented yaw and pitch turns: Assessing the contribution of motion, static, and cognitive cues , 2006, Perception & psychophysics.

[108]  Hugo Merchant,et al.  Behavioral and neurophysiological aspects of target interception. , 2009, Advances in experimental medicine and biology.

[109]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[110]  Francesco Lacquaniti,et al.  Catching a Ball at the Right Time and Place: Individual Factors Matter , 2012, PloS one.

[111]  C. Craig,et al.  Bending It Like Beckham: How to Visually Fool the Goalkeeper , 2010, PloS one.

[112]  Francesco Lacquaniti,et al.  Contributions of the Human Temporoparietal Junction and MT/V5+ to the Timing of Interception Revealed by Transcranial Magnetic Stimulation , 2008, The Journal of Neuroscience.

[113]  F. Lacquaniti,et al.  Visuo-motor coordination and internal models for object interception , 2009, Experimental Brain Research.

[114]  Olaf Blanke,et al.  Gravity and observer's body orientation influence the visual perception of human body postures. , 2009, Journal of vision.

[115]  Francesco Lacquaniti,et al.  Spatiotemporal characteristics of muscle patterns for ball catching , 2013, Front. Comput. Neurosci..

[116]  S. Boudina,et al.  Clinical manifestations of , 2009 .