A Nonhomogeneous Poisson Hidden Markov Model for Claim Counts
暂无分享,去创建一个
Yi Lu | Leilei Zeng | Yi Lu | Leilei Zeng
[1] Eddie McKenzie,et al. Discrete variate time series , 2003 .
[2] W. Zucchini,et al. Hidden Markov Models for Time Series: An Introduction Using R , 2009 .
[3] W. M. Gray,et al. Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation Influences , 1984 .
[4] Roberta Paroli,et al. Poisson Hidden Markov models for time series of overdispersed insurance counts , 2000 .
[5] A. Petkau,et al. Application of hidden Markov models to multiple sclerosis lesion count data , 2005, Statistics in medicine.
[6] T. Rydén. Parameter Estimation for Markov Modulated Poisson Processes , 1994 .
[7] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[8] Richard W. Katz,et al. Stochastic Modeling of Hurricane Damage , 2002 .
[9] Mohammed A Quddus,et al. Time series count data models: an empirical application to traffic accidents. , 2008, Accident; analysis and prevention.
[10] C. Radhakrishna Rao,et al. Some small sample tests of significance for a Poisson distribution , 1956 .
[11] P. Guttorp,et al. A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .
[12] Alain Latour,et al. Integer‐Valued GARCH Process , 2006 .
[13] Mark A. Saunders,et al. Normalized Hurricane Damage in the United States: 1900–2005 , 2008 .
[14] Jan Bulla,et al. Computational issues in parameter estimation for stationary hidden Markov models , 2008, Comput. Stat..
[15] R. Katz. On Some Criteria for Estimating the Order of a Markov Chain , 1981 .
[16] R. Pielke,et al. La Niña, El Niño, and Atlantic Hurricane Damages in the United States , 1999 .
[17] Rachel J. Mackay,et al. Estimating the order of a hidden markov model , 2002 .
[18] Andréas Heinen,et al. Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .
[19] M. Puterman,et al. Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. , 1992, Biometrics.
[20] J. Gart,et al. On the conditional moments of the k-statistics for the Poisson distribution , 1970 .
[21] José Garrido,et al. Regime-Switching Periodic Models For Claim Counts , 2006 .
[22] B. McCabe,et al. Analysis of low count time series data by poisson autoregression , 2004 .
[23] P S Albert,et al. A two-state Markov mixture model for a time series of epileptic seizure counts. , 1991, Biometrics.
[24] Biing-Hwang Juang,et al. Hidden Markov Models for Speech Recognition , 1991 .
[25] M. Lipsitch,et al. The analysis of hospital infection data using hidden Markov models. , 2004, Biostatistics.
[26] Christian H. Weiß,et al. Modelling time series of counts with overdispersion , 2009, Stat. Methods Appl..
[27] Christian H. Weiß,et al. Thinning operations for modeling time series of counts—a survey , 2008 .
[28] José Garrido,et al. On double periodic non-homogeneous poisson processes , 2002 .
[29] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[30] S. P. Pederson,et al. Hidden Markov and Other Models for Discrete-Valued Time Series , 1998 .
[31] S. Zeger. A regression model for time series of counts , 1988 .
[32] Stelios Kafandaris,et al. Practical Risk Theory for Actuaries , 1995 .
[33] Michael Höhle,et al. Count data regression charts for the monitoring of surveillance time series , 2008, Comput. Stat. Data Anal..
[34] Yi Lu,et al. Doubly periodic non-homogeneous Poisson models for hurricane data , 2005 .
[35] H. Akaike. A new look at the statistical model identification , 1974 .
[36] Roman Liesenfeld,et al. Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..