A Nonhomogeneous Poisson Hidden Markov Model for Claim Counts

Abstract We propose a nonhomogeneous Poisson hidden Markov model for a time series ofclaim counts that accounts for both seasonal variations and random fluctuations in the claims intensity. It assumes that the parameters of the intensity function for the nonhomogeneous Poisson distribution vary according to an (unobserved) underlying Markov chain. This can apply to natural phenomena that evolve in a seasonal environment. For example, hurricanes that are subject to random fluctuations (El Niño-La Niña cycles) affect insurance claims. The Expectation-Maximization (EM) algorithm is used to calculate the maximum likelihood estimators for the parameters of this dynamic Poisson hidden Markov model. Statistical applications of this model to Atlantic hurricanes and tropical storms data are discussed.

[1]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[2]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[3]  W. M. Gray,et al.  Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation Influences , 1984 .

[4]  Roberta Paroli,et al.  Poisson Hidden Markov models for time series of overdispersed insurance counts , 2000 .

[5]  A. Petkau,et al.  Application of hidden Markov models to multiple sclerosis lesion count data , 2005, Statistics in medicine.

[6]  T. Rydén Parameter Estimation for Markov Modulated Poisson Processes , 1994 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  Richard W. Katz,et al.  Stochastic Modeling of Hurricane Damage , 2002 .

[9]  Mohammed A Quddus,et al.  Time series count data models: an empirical application to traffic accidents. , 2008, Accident; analysis and prevention.

[10]  C. Radhakrishna Rao,et al.  Some small sample tests of significance for a Poisson distribution , 1956 .

[11]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[12]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[13]  Mark A. Saunders,et al.  Normalized Hurricane Damage in the United States: 1900–2005 , 2008 .

[14]  Jan Bulla,et al.  Computational issues in parameter estimation for stationary hidden Markov models , 2008, Comput. Stat..

[15]  R. Katz On Some Criteria for Estimating the Order of a Markov Chain , 1981 .

[16]  R. Pielke,et al.  La Niña, El Niño, and Atlantic Hurricane Damages in the United States , 1999 .

[17]  Rachel J. Mackay,et al.  Estimating the order of a hidden markov model , 2002 .

[18]  Andréas Heinen,et al.  Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .

[19]  M. Puterman,et al.  Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. , 1992, Biometrics.

[20]  J. Gart,et al.  On the conditional moments of the k-statistics for the Poisson distribution , 1970 .

[21]  José Garrido,et al.  Regime-Switching Periodic Models For Claim Counts , 2006 .

[22]  B. McCabe,et al.  Analysis of low count time series data by poisson autoregression , 2004 .

[23]  P S Albert,et al.  A two-state Markov mixture model for a time series of epileptic seizure counts. , 1991, Biometrics.

[24]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[25]  M. Lipsitch,et al.  The analysis of hospital infection data using hidden Markov models. , 2004, Biostatistics.

[26]  Christian H. Weiß,et al.  Modelling time series of counts with overdispersion , 2009, Stat. Methods Appl..

[27]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[28]  José Garrido,et al.  On double periodic non-homogeneous poisson processes , 2002 .

[29]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[30]  S. P. Pederson,et al.  Hidden Markov and Other Models for Discrete-Valued Time Series , 1998 .

[31]  S. Zeger A regression model for time series of counts , 1988 .

[32]  Stelios Kafandaris,et al.  Practical Risk Theory for Actuaries , 1995 .

[33]  Michael Höhle,et al.  Count data regression charts for the monitoring of surveillance time series , 2008, Comput. Stat. Data Anal..

[34]  Yi Lu,et al.  Doubly periodic non-homogeneous Poisson models for hurricane data , 2005 .

[35]  H. Akaike A new look at the statistical model identification , 1974 .

[36]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..