Anisotropic nematic fluctuations above the ferroquadrupolar transition in TmVO4

Ferroquadrupole order of local atomic orbitals provides a specific realization of electronic nematic order. TmVO 4 is an insulator and undergoes ferroquadrupolar order associated with the local Tm 4 f orbitals at T Q = 2 . 15 K. The material is a model system to study nematic order and the roles played by nematic fluctuations. Here we present 51 V nuclear magnetic resonance data as a function of field orientation in a single crystal. Although the spectra are well understood in terms of direct dipolar hyperfine couplings, the spin-lattice relaxation rate exhibits strong anisotropy that cannot be understood in terms of magnetic fluctuations. We find that the spin-lattice relaxation rate scales with the shear elastic constant associated with the ferroquadrupole phase transition, suggesting that quadrupole (nematic) fluctuations dominate the spin-lattice relaxation for in-plane fields.

[1]  N. Curro,et al.  Measurements of the NMR Knight shift tensor and nonlinear magnetization in URu2Si2 , 2018, 1802.06051.

[2]  Akash V. Maharaj,et al.  Transverse fields to tune an Ising-nematic quantum phase transition , 2017, Proceedings of the National Academy of Sciences.

[3]  N. Curro,et al.  NMR Evidence for Inhomogeneous Nematic Fluctuations in BaFe_{2}(As_{1-x}P_{x})_{2}. , 2015, Physical review letters.

[4]  J. Chu,et al.  Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors , 2015, Science.

[5]  J. Crocker,et al.  NMR evidence for inhomogeneous glassy behavior driven by nematic fluctuations in iron arsenide superconductors , 2015, 1503.01844.

[6]  J. Brink,et al.  Orbital-driven nematicity in FeSe. , 2014, Nature materials.

[7]  E. Berg,et al.  Enhancement of superconductivity near a nematic quantum critical point. , 2014, Physical review letters.

[8]  T. Maier,et al.  Pairing interaction near a nematic quantum critical point of a three-band CuO2 model , 2014 .

[9]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[10]  J. Schmalian,et al.  Nematic order in iron superconductors - who is in the driver's seat? , 2013, 1312.6085.

[11]  J. Schmalian,et al.  Scaling between magnetic and lattice fluctuations in iron pnictide superconductors. , 2013, Physical review letters.

[12]  F. Casola,et al.  A two-axis goniometer for low-temperature nuclear magnetic resonance measurements on single crystals. , 2012, The Review of scientific instruments.

[13]  B. Young,et al.  Probing the bulk electronic states of Bi2Se3 using nuclear magnetic resonance , 2012 .

[14]  J. Chu,et al.  Divergent Nematic Susceptibility in an Iron Arsenide Superconductor , 2012, Science.

[15]  N. Shannon,et al.  Angle-resolved NMR: Quantitative theory of75AsT1relaxation rate in BaFe2As2 , 2011, 1109.0384.

[16]  J. Sethna,et al.  Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states , 2010, Nature.

[17]  M. Vojta Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity , 2009, 0901.3145.

[18]  K. Dahmen,et al.  Hysteresis and noise from electronic nematicity in high-temperature superconductors. , 2005, Physical review letters.

[19]  G. Bowden A review of the low temperature properties of the rare earth vanadates , 1998 .

[20]  A. Suter,et al.  Mixed magnetic and quadrupolar relaxation in the presence of a dominant static Zeeman Hamiltonian , 1998 .

[21]  V. J. Emery,et al.  Electronic liquid-crystal phases of a doped Mott insulator , 1997, Nature.

[22]  A. Rigamonti NMR-NQR studies of structural phase transitions , 1984 .

[23]  J. Gregg,et al.  Nuclear electric quadrupole interaction in LnVO4 , 1983 .

[24]  S. R. Smith,et al.  Microwave ultrasonic attenuation above the Jahn-Teller phase transition in TmVO4 , 1983 .

[25]  M. Corti,et al.  133Cs Quadrupole Perturbed NMR Study of Jahn-Teller Phase Transitions in CsCuCl32) , 1981 .

[26]  M. Wells,et al.  Radiofrequency studies of TmVO4 , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  D. Huber,et al.  Low-frequency dynamics in cooperative Jahn-Teller systems , 1979 .

[28]  F. Borsa,et al.  Electronic spin‐dynamics at a structural phase transition by cooperative Jahn‐Teller effect: An Al27 NMR study in PrAlO3 , 1978 .

[29]  G. Gehring,et al.  Co-operative Jahn-Teller effects , 1975 .

[30]  S. H. Smith,et al.  Flux growth of rare earth vanadates and phosphates , 1974 .

[31]  R. Feigelson Flux Growth of Type RVO4 Rare‐Earth Vanadate Crystals , 1968 .