A new image denoising framework based on bilateral filter

The bilateral filter is a nonlinear filter that does spatial averaging without smoothing edges; it has shown to be an effective image denoising technique in addition to some other applications. There are two main contributions of this paper. First, we provide an empirical study of the optimal parameter selection for the bilateral filter in image denoising applications. Second, we present an extension of the bilateral filter: multi-resolution bilateral filter, where bilateral filtering is applied to low-frequency subbands of a signal decomposed using an orthogonal wavelet transform. Combined with wavelet thresholding, this new image denoising framework turns out to be very effective in eliminating noise in real noisy images. We provide experimental results with both simulated data and real data.

[1]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, ECCV.

[2]  Michael Elad,et al.  On the bilateral filter and ways to improve it , 2002 .

[3]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[5]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[6]  Frédo Durand,et al.  Flash photography enhancement via intrinsic relighting , 2004, SIGGRAPH 2004.

[7]  Albert C. S. Chung,et al.  Trilateral filtering for biomedical images , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[8]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[9]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[10]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[11]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[12]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[13]  Frédo Durand,et al.  A gentle introduction to bilateral filtering and its applications , 2007, SIGGRAPH Courses.

[14]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[15]  L. McMillan,et al.  Video enhancement using per-pixel virtual exposures , 2005, SIGGRAPH 2005.

[16]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Thierry Blu,et al.  A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding , 2007, IEEE Transactions on Image Processing.

[18]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[19]  Aleksandra Pizurica,et al.  Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising , 2006, IEEE Transactions on Image Processing.