Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals

We report the first-principles electronic structure of BiVO4, a promising photocatalyst for hydrogen generation. BiVO4 is found to be a direct band gap semiconductor, despite having band extrema away from the Brillouin zone center. Coupling between Bi 6s and O 2p forces an upward dispersion of the valence band at the zone boundary; however, a direct gap is maintained via coupling between V 3d, O 2p, and Bi 6p, which lowers the conduction band minimum. These interactions result in symmetric hole and electron masses. Implications for the design of ambipolar metal oxides are discussed.

[1]  Bruce A. Parkinson,et al.  Combinatorial Approach to Identification of Catalysts for the Photoelectrolysis of Water , 2005 .

[2]  W. Richter,et al.  SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies , 1984 .

[3]  Todd G. Deutsch,et al.  Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping , 2007 .

[4]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[5]  Young Ran Park,et al.  Optical investigation of charge-transfer transitions in spinel Co3O4 , 2003 .

[6]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[7]  K. Domen,et al.  Crystal Structure and Electron Density of Tantalum Oxynitride, a Visible Light Responsive Photocatalyst , 2007 .

[8]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[9]  A. Walsh,et al.  Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory , 2004 .

[10]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[11]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[12]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[13]  Bruce A. Parkinson,et al.  Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity , 2008 .

[14]  A. Walsh,et al.  A theoretical and experimental study of the distorted pyrochlore Bi2Sn2O7 , 2006 .

[15]  Hironori Arakawa,et al.  Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. , 2003, Chemical communications.

[16]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[17]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[18]  D. Errandonea,et al.  Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius , 2008, 0807.2115.

[19]  Yanfa Yan,et al.  Rules of structure formation for the homologous InMO3(ZnO)n compounds. , 2008, Physical review letters.

[20]  Aron Walsh,et al.  Electronic Structure and Phase Stability of MgO, ZnO, CdO, and Related Ternary Alloys , 2008 .

[21]  K. Domen,et al.  Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen , 2008 .

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[24]  A. Janotti,et al.  Native point defects in ZnO , 2007 .

[25]  A. Walsh,et al.  Electronic, energetic, and chemical effects of intrinsic defects and Fe-doping of CoAl2O4: A DFT+U study , 2008 .

[26]  H. Sugihara,et al.  Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. , 2006, The journal of physical chemistry. B.

[27]  B. Boukamp,et al.  Bulk and electrochemical properties of BiVO4 , 1992 .

[28]  R. G. Breckenridge,et al.  Electrical properties of titanium dioxide semiconductors , 1950 .

[29]  A. Walsh,et al.  Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. , 2006, Physical review letters.

[30]  F. Morin Electrical Properties of a-Fe2O3 , 1954 .

[31]  Horst Kisch,et al.  Visible Light Induced Photoelectrochemical Properties of n-BiVO4 and n-BiVO4/p-Co3O4 , 2008 .

[32]  A. Walsh,et al.  An ab initio Study of Reduction of V2O5 through the Formation of Oxygen Vacancies and Li Intercalation , 2008 .

[33]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[34]  Georg Kresse,et al.  AB INITIO CALCULATION OF THE ORIGIN OF THE DISTORTION OF ALPHA -PBO , 1999 .

[35]  A. Walsh,et al.  Electronic structure of the alpha and delta phases of Bi2O3: A combined ab initio and x-ray spectroscopy study , 2006 .

[36]  A. Walsh,et al.  Origins of band-gap renormalization in degenerately doped semiconductors , 2008 .

[37]  T. Marks,et al.  Silver delafossite oxides. , 2008, Inorganic chemistry.

[38]  H. Minoura,et al.  Simple electrochemical method for the preparation of a highly oriented and highly photoactive α‐PbO film , 1994 .

[39]  A. Walsh,et al.  The origin of the stereochemically active Pb(II) lone pair : DFT calculations on PbO and PbS , 2005 .

[40]  A. Sleight,et al.  Crystal growth and structure of BiVO4 , 1979 .

[41]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[42]  Q. Jia,et al.  Structural and Photoelectrochemical Properties of BiVO4 Thin Films , 2008 .

[43]  Hei Wong,et al.  Electronic structure of α-Al2O3: Ab initio simulations and comparison with experiment , 2007 .

[44]  G. Watson,et al.  Polymorphism in bismuth stannate: A first-principles study , 2007 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  S. A. Mayén-Hernández,et al.  CdO+CdTiO3 thin films prepared by sol-gel , 2006 .

[47]  A. Kudo,et al.  A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties , 1999 .

[48]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[49]  A. Walsh,et al.  Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations , 2007 .

[50]  A. Kudo,et al.  Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7(M = Nb and Ta) and Their Photocatalytic Properties , 2008 .

[51]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[52]  Shicheng Zhang,et al.  Mesoporous bismuth titanate with visible-light photocatalytic activity. , 2008, Chemical communications.

[53]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[54]  S. Zhang,et al.  Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. , 2002, Physical review letters.

[55]  P. Woodward,et al.  Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs vs inert pairs. , 2007, Inorganic chemistry.

[56]  R. Franchy,et al.  A combined scanning tunneling microscopy and electron energy loss spectroscopy study on the formation of thin, well-ordered β-Ga2O3 films on CoGa(001) , 1998 .