Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites

We investigated the petrologic, geochemical, and spectral parameters that relate to the type and degree of aqueous alteration in nine CM chondrites and one CI (Ivuna) carbonaceous chondrite. Our underlying hypothesis is that the position and shape of the 3 μm band is diagnostic of phyllosilicate mineralogy. We measured reflectance spectra of the chondrites under dry conditions (elevated temperatures) and vacuum (10−8 to 10−7 torr) to minimize adsorbed water and mimic the space environment, for subsequent comparison with reflectance spectra of asteroids. We have identified three spectral CM groups in addition to Ivuna. “Group 1,” the least altered group as determined from various alteration indices, is characterized by 3 μm band centers at longer wavelengths, and is consistent with cronstedtite (Fe‐serpentine). “Group 3,” the most altered group, is characterized by 3 μm band centers at shorter wavelengths and is consistent with antigorite (serpentine). “Group 2” is an intermediate group between group 1 and 3. Ivuna exhibits a unique spectrum that is distinct from the CM meteorites and is consistent with lizardite and chrysotile (serpentine). The petrologic and geochemical parameters, which were determined using electron microprobe analyses and microscopic observations, are found to be consistent with the three spectral groups. These results indicate that the distinct parent body aqueous alteration environments experienced by these carbonaceous chondrites can be distinguished using reflectance spectroscopy. High‐quality ground‐based telescopic observations of Main Belt asteroids can be expected to reveal not just whether an asteroid is hydrated, but also details of the alteration state.

[1]  R. Clark,et al.  Nano-Iron on Outer Solar System Satellites, Implications for Space Weathering , 2012 .

[2]  C. Russell,et al.  Dark material on Vesta from the infall of carbonaceous volatile-rich material , 2012, Nature.

[3]  C. Hibbitts,et al.  The Adsorption of Gases onto Refractory Materials: CO_2 onto Clays and Their Relevance to the Icy Galilean Satellites , 2012 .

[4]  S. Pizzarello,et al.  The soluble organic compounds of the Bells meteorite: Not a unique or unusual composition , 2011 .

[5]  E. Palmer,et al.  Fine-Grained Serpentine in CM2 Carbonaceous Chondrites and Its Implications for the Extent of Aqueous Alteration on the Parent Body: A Review , 2011 .

[6]  P. Bland,et al.  Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration , 2011 .

[7]  Driss Takir,et al.  Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups , 2011 .

[8]  Daniel P. Glavin,et al.  The effects of parent body processes on amino acids in carbonaceous chondrites , 2010 .

[9]  M. Nolan,et al.  Asteroid (101955) 1999 RQ36: Optimum Target for an Asteroid Sample Return Mission , 2010 .

[10]  P. Bland,et al.  Modal mineralogy of CV3 chondrites by X-ray diffraction (PSD-XRD) , 2010 .

[11]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[12]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[13]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[14]  R. Clark,et al.  Reflectance spectroscopy of organic compounds: 1. Alkanes , 2009 .

[15]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[16]  P. Ehrenfreund,et al.  Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites , 2007 .

[17]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[18]  I-Ming Chou,et al.  Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates , 2006 .

[19]  G. J. Flynn,et al.  The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles , 2006 .

[20]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[21]  M. Zolensky,et al.  The Meteoritical Bulletin, No. 89, 2005 September , 2005 .

[22]  Tomoki Nakamura,et al.  Infrared spectroscopic taxonomy for carbonaceous chondrites from speciation of hydrous components , 2005 .

[23]  J. Eiler,et al.  Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites 1 1 Associate , 2004 .

[24]  R. H. Brown,et al.  Hydrogen concentrations on C‐class asteroids derived from remote sensing , 2003 .

[25]  Andrew Scott Rivkin,et al.  Hydrated Minerals on Asteroids: The Astronomical Record , 2003 .

[26]  D. Trilling,et al.  Hydrogen Concentrations on C-class Asteroids from Remote Sensing , 2002 .

[27]  A. Kearsley,et al.  Organic-Inorganic Spatial Relationships in Carbonaceous Chondrites , 2002 .

[28]  Raymond F. Kokaly,et al.  Surface Reflectance Calibration of Terrestrial Imaging Spectroscopy Data : a Tutorial Using AVIRIS , 2002 .

[29]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[30]  D P Glavin,et al.  Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Zolensky,et al.  On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites , 2000 .

[32]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[33]  M. Zolensky,et al.  Absorption bands near three micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids , 1997 .

[34]  A. Brearley Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites , 1997 .

[35]  J. Grossman The Meteoritical Bulletin, No. 81 , 1997 .

[36]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[37]  M. Zolensky,et al.  Infrared diffuse reflectance spectra of carbonaceous chondrites: Amount of hydrous minerals , 1994 .

[38]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[39]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[40]  Martin R. Lee The Petrography, Mineralogy and Origins of Calcium Sulphate within the Cold Bokkeveld CM Carbonaceous Chondrite , 1993 .

[41]  Sherwood Chang,et al.  Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .

[42]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[43]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[44]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[45]  H. McSween,et al.  Mineralogical alteration of CM carbonaceous chondrites: A view , 1989 .

[46]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[47]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[48]  D. DeBra,et al.  Engineering technology for physics experiments in space , 1989 .

[49]  H. McSween Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy , 1987 .

[50]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[51]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[52]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[53]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[54]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[55]  S. Pizzarello,et al.  Amino acids in meteorites. , 1983, Advances in space research : the official journal of the Committee on Space Research.

[56]  Jack J. Hsia,et al.  Reflection properties of pressed polytetrafluoroethylene powder , 1981 .

[57]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[58]  L. Lebofsky Infrared reflectance spectra of asteroids - A search for water of hydration , 1980 .

[59]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[60]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[61]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[62]  A. Zaikowski Infrared spectra of the Orgueil (C-1) chondrite and serpentine minerals , 1979 .

[63]  U. Fink,et al.  Remote spectroscopic identification of carbonaceous chondrite mineralogies: Applications to Ceres and Pallas , 1979 .

[64]  J. Jedwab La magnétite de la météorite d'Orgueil vue au microscope électronique à balayage , 1971 .

[65]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .