Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions

We study the dynamical evolution of globular clusters using our two-dimensional Monte Carlo code with the inclusion of primordial binary interactions for equal-mass stars. We use approximate analytical cross sections for energy generation from binary-binary and binary-single interactions. After a brief period of slight contraction or expansion of the core over the first few relaxation times, all clusters enter a much longer phase of stable "binary burning" lasting many tens of relaxation times. The structural parameters of our models during this phase match well those of most observed globular clusters. At the end of this phase, clusters that have survived tidal disruption undergo deep core collapse, followed by gravothermal oscillations. Our results clearly show that the presence of even a small fraction of binaries in a cluster is sufficient to support the core against collapse significantly beyond the normal core-collapse time predicted without the presence of binaries. For tidally truncated systems, collapse is easily delayed sufficiently that the cluster will undergo complete tidal disruption before core collapse. As a first step toward the eventual goal of computing all interactions exactly using dynamical three- and four-body integration, we have incorporated an exact treatment of binary-single interactions in our code. We show that results using analytical cross sections are in good agreement with those using exact three-body integration, even for small binary fractions, where binary-single interactions are energetically most important.

[1]  Junichiro Makino,et al.  Star cluster ecology-IV. Dissection of an open star cluster: photometry , 2001 .

[2]  David W. Latham,et al.  A Search for Spectroscopic Binaries in the Globular Cluster M3 , 1988 .

[3]  Simon Portegies Zwart,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 2000 .

[4]  S. Mikkola Encounters of binaries. III: Fly-bys , 1984 .

[5]  C. Kochanek The dynamical evolution of tidal capture binaries , 1992 .

[6]  S. Aarseth,et al.  Direct N-body Modelling of Stellar Populations: Blue Stragglers in M67 , 2000, astro-ph/0012113.

[7]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. II. Mass Spectra, Stellar Evolution, and Lifetimes in the Galaxy , 1999, astro-ph/9912155.

[8]  J. Makino Postcollapse Evolution of Globular Clusters , 1996, astro-ph/9608160.

[9]  Deep Hubble Space Telescope WFPC2 Photometry of NGC 288. II. The Main-Sequence Luminosity Function* , 2002, astro-ph/0202176.

[10]  S. F. Portegies Zwart,et al.  Mass Segregation in Globular Clusters , 2002 .

[11]  R. Mignani,et al.  Blue Stragglers, Young White Dwarfs, and UV-Excess Stars in the Core of 47 Tucanae , 2001, astro-ph/0107056.

[12]  D. Heggie,et al.  Dynamical effects of primordial binaries in star clusters. I : Equal masses , 1992 .

[13]  R. Mathieu,et al.  Random gravitational encounters and the evolution of spherical systems. VIII. Clusters with an initial distribution of binaries , 1980 .

[14]  Deutsch,et al.  Ultracompact X-Ray Binaries in Globular Clusters: Variability of the Optical Counterpart of X1832–330 in NGC 6652 , 1999, The Astrophysical journal.

[15]  Junichiro Makino,et al.  Parameters of core collapse , 2003 .

[16]  D. Heggie,et al.  Evolution of star clusters after core collapse , 1989 .

[17]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[18]  P. Hut Hard binary-single star scattering cross sections for equal masses , 1984 .

[19]  B. Hansen,et al.  Neutron star retention and millisecond pulsar production in globular clusters , 1998 .

[20]  Piet Hut,et al.  Star cluster evolution with primordial binaries. 3: Effect of the Galactic tidal field , 1994 .

[21]  J. Goodman,et al.  Fokker-Planck calculations of star clusters with primordial binaries , 1991 .

[22]  M. Hénon Monte Carlo models of star clusters , 1971 .

[23]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[24]  S. Mikkola Encounters of binaries – I. Equal energies , 1983 .

[25]  D. Sugimoto,et al.  Post-collapse evolution of globular clusters , 1983 .

[26]  M. Mateo,et al.  Blue stragglers as remnants of stellar mergers - The discovery of short-period eclipsing binaries in the globular cluster NGC 5466 , 1990 .

[27]  Jeremy Goodman,et al.  Nonlinear Damping of Oscillations in Tidal-Capture Binaries , 1996 .

[28]  E. S. Phinney,et al.  BINARIES IN GLOBULAR CLUSTERS , 1992, astro-ph/9710262.

[29]  James E. Hesser,et al.  Spectroscopic Binaries in Globular Clusters. II. A Search for Long-Period Binaries in M22 , 1996 .

[30]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[31]  Charles D. Bailyn,et al.  Blue Stragglers and Other Stellar Anomalies: Implications for the Dynamics of Globular Clusters , 1995 .

[32]  S. Zwart,et al.  The Disruption of Globular Star Clusters in the Galaxy: A Comparative Analysisbetween Fokker-Planck and N-Body Models , 1998, astro-ph/9805310.

[33]  C. Bailyn,et al.  Hubble Space Telescope Observations of the Post-Core-Collapse Globular Cluster NGC 6752. II. A Large Main-Sequence Binary Population , 1997 .

[34]  M. Mateo,et al.  Primordial main equence binary stars in the globular cluster M71 , 1994 .

[35]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[36]  M. Lee N-body evolution of dense clusters of compact stars , 1993 .

[37]  M. Giersz,et al.  A stochastic Monte Carlo approach to model real star cluster evolution - II. Self-consistent models and primordial binaries , 1999, astro-ph/9911504.

[38]  F. A. Rasio,et al.  THERMAL AND DYNAMICAL EQUILIBRIUM IN TWO-COMPONENT STAR CLUSTERS , 2000 .

[39]  S. Rappaport,et al.  Formation of Short-Period Binary Pulsars in Globular Clusters , 1999, The Astrophysical journal.

[40]  P. Leonard Stellar Collisions in Globular Clusters and the Blue Straggler Problem , 1989 .

[41]  S. Mikkola Heating of stellar systems by binary collisions , 1983 .

[42]  Junichiro Makino,et al.  Star cluster evolution with primordial binaries. I. A comparative study , 1990 .

[43]  J. Breeden,et al.  The onset of gravothermal oscillations in globular cluster evolution , 1994 .

[44]  Theoretical Implications of the PSR B1620?26 Triple System and Its Planet , 1999, astro-ph/9905347.

[45]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[46]  P. Leonard,et al.  On the possibility of a collisional origin for the blue stragglers and contact binaries in the old open clusters M67 and NGC 188 , 1992 .

[47]  D. Chernoff,et al.  Frequency of Stellar Collisions in Three-Body Heating , 1996 .

[48]  Puragra Guhathakurta,et al.  The Frequency of Binary Stars in the Core of 47 Tucanae , 2001, astro-ph/0105441.

[49]  Simon F. Portegies Zwart,et al.  The Evolution of Globular Clusters in the Galaxy , 1999, astro-ph/9903366.

[50]  P. Hut,et al.  The Evolution of a primordial binary population in a globular cluster , 1992 .

[51]  G. Quinlan The time-scale for core collapse in spherical star clusters , 1996, astro-ph/9606182.

[52]  P. Hut,et al.  Primordial binaries and globular cluster evolution , 1989, Nature.

[53]  Steinn Sigurdsson,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1995 .

[54]  Junichiro Makino,et al.  Star cluster evolution with primordial binaries. II, Detailed analysis , 1991 .

[55]  Michael M. Shara Stellar Collisions, Mergers and Their Consequences , 2002 .

[56]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .