(α, β)-Modules in Graphs

Modular Decomposition focuses on repeatedly identifying a module M (a collection of vertices that shares exactly the same neighbourhood outside ofM) and collapsing it into a single vertex. This notion of exactitude of neighbourhood is very strict, especially when dealing with real world graphs. We study new ways to relax this exactitude condition. However, generalizing modular decomposition is far from obvious. Most of the previous proposals lose algebraic properties of modules and thus most of the nice algorithmic consequences. We introduce the notion of an (α, β)-module, a relaxation that allows a bounded number of errors in each node and maintains some of the algebraic structure. It leads to a new combinatorial decomposition with interesting properties. Among the main results in this work, we show that minimal (α, β)-modules can be computed in polynomial time, and that every graph admits an (α, β)-modular decomposition tree, thus generalizing Gallai’s Theorem (which corresponds to the case for α = β = 0). Unfortunately we give evidence that computing such a decomposition tree can be difficult.

[1]  Rémi Watrigant,et al.  Twin-width I: tractable FO model checking , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[2]  Mieczyslaw Borowiecki,et al.  Matching cutsets in graphs of diameter 2 , 2008, Theor. Comput. Sci..

[3]  Maurizio Patrignani,et al.  The Complexity of the Matching-Cut Problem , 2001, WG.

[4]  Ronald L. Graham,et al.  ON PRIMITIVE GRAPHS AND OPTIMAL VERTEX ASSIGNMENTS , 1970 .

[5]  William T. Trotter,et al.  Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures , 1993, Discret. Math..

[6]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[7]  Augustine M. Moshi Matching cutsets in graphs , 1989, J. Graph Theory.

[8]  Charis Papadopoulos,et al.  Drawing graphs using modular decomposition , 2005, J. Graph Algorithms Appl..

[9]  Michel Habib,et al.  Tree-representation of set families and applications to combinatorial decompositions , 2012, Eur. J. Comb..

[10]  Michel Habib,et al.  Approximating Modular Decomposition Is Hard , 2020, CALDAM.

[11]  Michel Habib,et al.  A survey of the algorithmic aspects of modular decomposition , 2009, Comput. Sci. Rev..

[12]  Jeremy P. Spinrad,et al.  Forbidden subgraph decomposition , 2002, Discret. Math..

[13]  Michel Habib,et al.  Algorithmic aspects of a general modular decomposition theory , 2006, Discret. Appl. Math..

[14]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[15]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[16]  Paolo Serafino,et al.  Speeding up graph clustering via modular decomposition based compression , 2013, SAC '13.

[17]  Maria Chudnovsky,et al.  On the Erdős-Hajnal conjecture for six-vertex tournaments , 2019, Eur. J. Comb..

[18]  M. Habib,et al.  Partition Refinement Techniques: An Interesting Algorithmic Tool Kit , 1999, Int. J. Found. Comput. Sci..

[19]  Julien Gagneur,et al.  Modular decomposition of protein-protein interaction networks , 2004, Genome Biology.

[20]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[21]  Rolf H. Möhring Almost all comparability graphs are UPO , 1984, Discret. Math..

[22]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[23]  Vasek Chvátal,et al.  Recognizing decomposable graphs , 1984, J. Graph Theory.

[24]  Dieter Kratsch,et al.  Algorithms solving the Matching Cut problem , 2015, Theor. Comput. Sci..

[25]  Jirí Fiala,et al.  A complete complexity classification of the role assignment problem , 2005, Theor. Comput. Sci..

[26]  Michel Habib,et al.  A General Algorithmic Scheme for Modular Decompositions of Hypergraphs and Applications , 2019, IWOCA.

[27]  Tero Harju,et al.  Structure and organization , 2014 .

[28]  Paul S. Bonsma,et al.  The complexity of the matching‐cut problem for planar graphs and other graph classes , 2003, J. Graph Theory.

[29]  Pinar Heggernes,et al.  Partitioning Graphs into Generalized Dominating Sets , 1998, Nord. J. Comput..

[30]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[31]  Wen-Lian Hsu Decomposition of perfect graphs , 1987, J. Comb. Theory, Ser. B.

[32]  藤重 悟 Submodular functions and optimization , 1991 .

[33]  D. Seinsche On a property of the class of n-colorable graphs , 1974 .

[34]  Cheng-Kuan Lin,et al.  Structure Fault-Tolerance of the Generalized Hypercube , 2019, Comput. J..

[35]  Hamida Seba,et al.  Querying massive graph data: A compress and search approach , 2017, Future Gener. Comput. Syst..

[36]  Jimmy J. M. Tan,et al.  The diagnosability of the matching composition network under the comparison diagnosis model , 2004, IEEE Transactions on Computers.

[37]  Michel Habib,et al.  Partitive hypergraphs , 1981, Discret. Math..

[38]  Rémi Watrigant,et al.  Twin-width II: small classes , 2020, SODA.

[39]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .

[40]  Andrzej Ehrenfeucht,et al.  Theory of 2-Structures, Part II: Representation Through Labeled Tree Families , 1990, Theor. Comput. Sci..